Finish Line New York Math, Third Edition Grade 5 Crosswalk

Unit/ Lesson	Title	CCLS	Next Generation Standard
UNIT 1	BIG IDEAS FROM GRADE 4		
Lesson 1	Multiplying and Dividing Whole Numbers	4.NBT.5, 6	NY-4.NBT.5, 6
Lesson 2	Understanding Decimals	4.NF.6, 7	NY-4.NF.6, 7
Lesson 3	Adding and Subtracting Fractions	4.NF.3.a, c, d	NY-4.NF.3.a, c, d
Lesson 4	Finding Equivalent Measurements	4.MD. 1	NY-4.MD. 1
UNIT 2	NUMBER AND OPERATIONS IN BASE TEN		
Lesson 5	Whole-Number Place Value	5.NBT. 1	NY-5.NBT. 1
Lesson 6	Powers of Ten	5.NBT. 2	NY-5.NBT. 2
Lesson 7	Decimal Names and Place Value	5.NBT.1, 3.a	NY-5.NBT.1, 3.a
Lesson 8	Comparing Decimals	5.NBT.3.b	NY-5.NBT.3.b
Lesson 9	Rounding Decimals	5.NBT. 4	NY-5.NBT. 4
Lesson 10	Multiplying Whole Numbers	5.NBT. 5	NY-5.NBT. 5
Lesson 11	Dividing Whole Numbers	5.NBT. 6	NY-5.NBT. 6
Lesson 12	Adding and Subtracting Decimals	5.NBT. 7	NY-5.NBT. 7
Lesson 13	Multiplying Decimals	5.NBT. 7	NY-5.NBT. 7
Lesson 14	Dividing Decimals	5.NBT. 7	NY-5.NBT. 7
UNIT 3	OPERATIONS AND ALGEBRAIC THINKING		
Lesson 15	Understanding and Writing Expressions	5.OA.1, 2	NY-5.OA.1, 2
Lesson 16	Evaluating Expressions	5.OA. 1	NY-5.OA. 1
Lesson 17	Patterns and Relationships	5.OA. 3	NY-5.OA. 3
UNIT 4	NUMBER AND OPERATIONS—FRACTIONS		
Lesson 18	Adding and Subtracting Fractions with Unlike Denominators	5.NF. 1	NY-5.NF. 1
Lesson 19	Word Problems with Addition and Subtraction of Fractions	5.NF. 2	NY-5.NF. 2

Unit/ Lesson	Title	CCLS	Next Generation Standard
Lesson 20	Connecting Fractions and Division	5.NF. 3	NY-5.NF. 3
Lesson 21	Multiplying Whole Numbers and Fractions	5.NF.4.a, b	NY-5.NF.4.a, b
Lesson 22	Multiplying Fractions	5.NF.4.a, b	NY-5.NF.4.a, b
Lesson 23	Multiplication and Scale	5.NF.5.a, b	NY-5.NF.5.a, b
Lesson 24	Word Problems with Multiplication of Fractions	5.NF. 6	NY-5.NF. 6
Lesson 25	Dividing with Unit Fractions	5.NF.7.a, b	NY-5.NF.7.a, b
Lesson 26	Word Problems with Division and Fractions	5.NF.7.c	NY-5.NF.7.c
UNIT 5	MEASUREMENT AND DATA		
Lesson 27	Measurement Conversions	5.MD. 1	NY-5.MD. 1
Lesson 28	Measurement Data on Line Plots	5.MD. 2	NY-5.MD. 2
Lesson 29	Understanding Volume	5.MD.3.a, b; 4	NY-5.MD.3.a, b; 4
Lesson 30	Volume of Rectangular Prisms	5.MD.5.a, b	NY-5.MD.5.a, b
Lesson 31	Volume of Irregular Figures	5.MD.5.c	NY-5.MD.5.c
UNIT 6	GEOMETRY		
Lesson 32	Using the Coordinate Plane	5.G. 1	NY-5.G. 1
Lesson 33	Solving Problems with the Coordinate Plane	5.G.2	NY-5.G. 2
Lesson 34	Properties of Two-Dimensional Figures	5.G. 3	NY-5.G.3
Lesson 35	Classifying Two-Dimensional Figures	5.G. 4	NY-5.G. 4

OPERATIONS AND ALGEBRAIC THINKING		
Cluster	Common Core Learning Standard	Next Generation Learning Standard
Write and interpret numerical expressions.	5.OA. 1 Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.	NY-5.OA. 1 Apply the order of operations to evaluate numerical expressions. e.g., $\begin{aligned} & 6+8 \div 2 \\ & \cdot(6+8) \div 2 \end{aligned}$ Note: Exponents and nested grouping symbols are not included.
	5.OA. 2 Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7 , then multiply by 2 " as $2 \times(8+7)$. Recognize that $3 \times(18932+921)$ is three times as large as $18932+921$, without having to calculate the indicate sum or product.	NY-5.OA. 2 Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. e.g., Express the calculation "add 8 and 7, then multiply by 2" as $(8+7) \times 2$. Recognize that $3 \times(18,932+921)$ is three times as large as $18,932+921$, without having to calculate the indicated sum or product.
Analyze patterns and relationships.	5.OA.3 Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3" and the starting number 0 , and given the rule "Add 6" and the starting number 0, generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.	NY-5.OA. 3 Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. e.g., Given the rule "Add 3" and the starting number 0, and given the rule "Add 6" and the starting number 0 , generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.

www.continentalpress.com

NUMBER AND OPERATIONS IN BASE TEN

Cluster	Common Core Learning Standard	Next Generation Learning Standard
Understand the place value system.	5.NBT. 1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left.	NY-5.NBT. 1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $\frac{1}{10}$ of what it represents in the place to its left.
	5.NBT. 2 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10 , and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 . Use whole number exponents to denote powers of 10 .	NY-5.NBT. 2 Use whole-number exponents to denote powers of 10. Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 .
	5.NBT. 3 Read, write, and compare decimals to thousandths. a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392=3 \times 100-$ b. Compare two decimals to thousandths based on meanings of the digits in each place, using $>$, $=$, and $<$ symbols to record the results of comparisons.	NY-5.NBT. 3 Read, write, and compare decimals to thousandths. NY-5.NBT.3.a Read and write decimals to thousandths using baseten numerals, number names, and expanded form. e.g., $\text { - } \begin{aligned} 47.392= & 4 \times 10+7 \times 1+3 \times \frac{1}{10}+9 \times \frac{1}{100}+2 \times \frac{1}{1000} \\ \text { - } 47.392= & (4 \times 10)+(7 \times 1)+\left(3 \times \frac{1}{10}\right)+\left(9 \times \frac{1}{100}\right)+ \\ & \left(2 \times \frac{1}{1000}\right) \\ -47.392= & (4 \times 10)+(7 \times 1)+(3 \times 0.1)+(9 \times 0.01)+ \\ & (2 \times 0.001) \end{aligned}$ NY-5.NBT.3.b Compare two decimals to thousandths based on meanings of the digits in each place, using $>,=$, and $<$ symbols to record the results of comparisons.
	5.NBT. 4 Use place value understanding to round decimals to any place.	NY-5.NBT. 4 Use place value understanding to round decimals to any place.

| NUMBER AND OPERATIONS IN BASE TEN | | | |
| :--- | :--- | :--- | :--- |$|$| Common Core Learning Standard |
| :--- | :--- |

NUMBER AND OPERATIONS-FRACTIONS		
Cluster	Common Core Learning Standard	Next Generation Learning Standard
Use equivalent fractions as a strategy to add and subtract fractions.	5.NF. 1 Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+5 / 4=8 / 12+15 / 12=23 / 12$. (In general, $a / b+c / d=(a d$ $+b c) / b d$.).	NY-5.NF. 1 Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. e.g., $\begin{aligned} & \text { - } \frac{1}{3}+\frac{2}{9}=\frac{3}{9}+\frac{2}{9}=\frac{5}{9} \\ & \text { - } \frac{2}{3}+\frac{5}{4}=\frac{8}{12}+\frac{15}{12}=\frac{23}{12} \end{aligned}$
	5.NF. 2 Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result 2/5 +1/2 = $3 / 7$, by observing that $3 / 7<1 / 2$.	NY-5.NF. 2 Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators. e.g., using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. e.g., Recognize an incorrect result $\frac{2}{5}+\frac{1}{2}=\frac{3}{7}$ by observing that $\frac{3}{7}<\frac{1}{2}$.
Apply and extend previous understandings of multiplications and division to multiply and divide fractions.	5.NF. 3 Interpret a fraction as division of the numerator by the denominator $(a / b=a \div b)$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret 3/4 as the result of dividing 3 by 4 , noting that $3 / 4$ multiplied by 4 equals 3 , and that when 3 wholes are shared equally among 4 people, each person has a share of size 3/4. If 9 people want to share a 50 -pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?	NY-5.NF. 3 Interpret a fraction as division of the numerator by the denominator $(a / b=a \div b)$. e.g., Interpret $\frac{3}{4}$ as the result of dividing 3 by 4 , noting that $\frac{3}{4}$ multiplied by 4 equals 3 , and that when 3 wholes are shared equally among 4 people each person has a share of size $\frac{3}{4}$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers. e.g., using visual fraction models or equations to represent the problem. e.g., If 9 people want to share a 50 -pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?

NUMBER AND OPERATIONS—FRACTIONS

Cluster
Apply and
extend previous
understandings
of multiplications
and division to
multiply and
divide fractions.

Common Core Learning Standard
5.NF. 4 Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.
a. Interpret the product $(a / b) \times q$ as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations $a \times q \div b$. For example, use a visual fraction model to show (2/3) \times $4=8 / 3$, and create a story context for this equation. Do the same with $(2 / 3) \times(4 / 5)=8 / 15$. (In general, $(a / b) \times(c / d)=a c / b d$.)
b. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.

Next Generation Learning Standard

NY-5.NF. 4 Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.

NY-5.NF.4.a Interpret the product $\frac{a}{b} \times q$ as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations a $\times q \div b$.
e.g., Use a visual fraction model to show $\frac{2}{3} \times 4=\frac{8}{3}$, and create a story context for this equation. Do the same with $\frac{2}{3} \times \frac{4}{5}=\frac{8}{15}$.
NY-5.NF.4.b Find the area of a rectangle with fractional side lengths by tiling it with rectangles of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.
e.g.,

The shaded portion shows the rectangle with the appropriate unit fraction side lengths.

The area of a $\frac{2}{3} \times \frac{3}{4}$ rectangle is $\frac{6}{12}$ because the whole is partitioned into 12 parts with 6 of them shaded.

NUMBER AND OPERATIONS—FRACTIONS

Cluster
 Apply and extend previous understandings of multiplications and division to multiply and divide fractions.

Common Core Learning Standard
5.NF. 5 Interpret multiplication as scaling (resizing), by:
a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.
b. Explaining why multiplying the given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a / b=$ $(n \times a) /(n \times b)$ to the effect of multiplying a / b by 1 .

Next Generation Learning Standard

NY-5.NF. 5 Interpret multiplication as scaling (resizing).

NY-5.NF.5.a Compare the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.
e.g. In the case of $10 \times \frac{1}{2}=5,5$ is half of 10 and 5 is 10 times larger than $\frac{1}{2}$.

NY-5.NF.5.b Explain why multiplying the given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case). Explain why multiplying a given number by a fraction less than 1 results in a product smaller than the given number. Relate the principle of fraction equivalence $\frac{a}{b}=\frac{a}{b} \times \frac{n}{n}$ to the effect of multiplying $\frac{a}{b}$ by 1 .
e.g.,

Explain why $4 \times \frac{3}{2}$ is greater than 4 .
Explain why $4 \times \frac{1}{2}$ is less than 4.
$\frac{1}{3}$ is equivalent to $\frac{2}{6}$ because $\frac{1}{3} \times \frac{2}{2}=\frac{2}{6}$.
NY-5.NF. 6 Solve real-world problems involving multiplication of fractions and mixed numbers.
e.g., using visual fraction models or equations to represent the problem.

NUMBER AND OPERATIONS—FRACTIONS

Cluster

Apply and extend previous understandings of multiplications and division to multiply and divide fractions.

Common Core Learning Standard
5.NF. 7 Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.
a. Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for $(1 / 3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1 / 3) \div 4=1 / 12$ because $1 / 12 \times 4=1 / 3$.
b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div(1 / 5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div(1 / 5)=20$ because $20 \times(1 / 5)=4$.
c. Solve real-world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins?

Note: Students able to multiply fractions in general can develop strategies to divide fractions in general, by reasoning about the relationship between multiplication and division. But division of a fraction by a fraction is not a requirement at this grade.

Next Generation Learning Standard

NY-5.NF. 7 Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.

NY-5.NF.7.a Interpret division of a unit fraction by a non-zero whole number, and compute such quotients.
e.g., Create a story context for $\frac{1}{3} \div 4$ and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $\frac{1}{3} \div 4=\frac{1}{12}$ because $\frac{1}{12} \times 4=\frac{1}{3}$.

NY-5.NF.7.b Interpret division of a whole number by a unit fraction, and compute such quotients.
e.g., Create a story context for $4 \div \frac{1}{5}$ and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div \frac{1}{5}=20$ because $20 \times \frac{1}{5}=4$.

NY-5.NF.7.c Solve real-world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions.
e.g., using visual fraction models and equations to represent the problem.
e.g., How much chocolate will each person get if 3 people share $\frac{1}{2}$ lb of chocolate equally? How many $\frac{1}{3}$-cup servings are in 2 cups of raisins?

Note: Students able to multiply fractions in general can develop strategies to divide fractions in general, by reasoning about the relationship between multiplication and division. But division of a fraction by a fraction is not a requirement until grade 6. (NY-6.NS.1).

MEASUREMENT AND DATA

Cluster	Common Core Learning Standard	Next Generation Learning Standard
Convert like measurement units within a given measurement system.	5.MD. 1 Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multistep, real-world problems.	NY-5.MD. 1 Convert among different-sized standard measurement units within a given measurement system when the conversion factor is given. Use these conversions in solving multistep, realworld problems. Notes: - All conversion factors will be given. - Grade 5 expectations for decimal operations are limited to work with decimals to hundredths.
Represent and interpret data.	5.MD. 2 Make a line plot to display a data set of measurements in fractions of a unit ($1 / 2,1 / 4,1 / 8$). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would equally.	NY-5.MD. 2 Make a line plot to display a data set of measurements in fractions of a unit $\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right)$. Use operations on fractions for this grade to solve problems involving information presented in line plots. e.g., Given different measurements of liquid in identical beakers, make a line plot to display the data and find the total amount of liquid in all of the beakers.
Geometric measurement: understand concepts of volume and relate volume to multiplication and addition.	5.MD. 3 Recognize volume as an attribute of solid figures and understand concepts of volume measurement. a. A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume. b. A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units.	NY-5.MD. 3 Recognize volume as an attribute of solid figures and understand concepts of volume measurement. NY-5.MD.3.a Recognize that a cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume. NY-5.MD.3.b Recognize that a solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units.
	5.MD. 4 Measure volumes by counting unit cubes, using cubic cm , cubic in, cubic ft, and improvised units.	NY-5.MD. 4 Measure volumes by counting unit cubes, using cubic cm , cubic in., cubic ft, and improvised units.

MEASUREMENT AND DATA

Cluster	Common Core Learning Standard
Geometric measurement: understand concepts of volume and relate volume to multiplication and addition.	5.MD. 5 Relate volume to the operations of multiplication and addition and solve real-world and mathematical problems involving volume. a. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g.. b. Apply the formulas $V=I \times w \times h$ and $V=b \times h$ for rectangular prisms to find volumes of right rectangular prisms with wholenumber edge lengths in the context of solving real-world and mathematical problems. c. Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real-world problems.

Next Generation Learning Standard

NY-5.MD. 5 Relate volume to the operations of multiplication and addition and solve real-world and mathematical problems involving volume.

NY-5.MD.5.a Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base.

NY-5.MD.5.b Apply the formulas $V=I \times w \times h$ and $\boldsymbol{V}=\boldsymbol{B} \times \boldsymbol{h}$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving realworld and mathematical problems.

NY-5.MD.5.c Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real-world problems.

GEOMETRY		
Cluster	Common Core Learning Standard	Next Generation Learning Standard
Graph points on the coordinate plane to solve real-world and mathematical problems.	5.G. 1 Use a pair of perpendicular number lines, called axes, to define a coordinate system with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate).	NY-5.G. 1 Use a pair of perpendicular number lines, called axes, to define a coordinate system with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond. $\text { e.g., } x \text {-axis and } x \text {-coordinate, } y \text {-axis and } y \text {-coordinate. }$
	5.G. 2 Represent real-world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.	NY-5.G. 2 Represent real-world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.
Classify twodimensional figures into categories based on their properties.	5.G. 3 Understand that attributes belonging to a category of twodimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles.	NY-5.G. 3 Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. e.g., All rectangles have four right angles and squares are rectangles, so all squares have four right angles. Note: The inclusive definition of a trapezoid will be utilized, which defines a trapezoid as "A quadrilateral with at least one pair of parallel sides."
	5.G.4 Classify two-dimensional figures in a hierarchy based on properties.	NY-5.G.4 Classify two-dimensional figures in a hierarchy based on properties.

