Contents

Introduction 3
Suggestions for Use 8
Additional Materials for Review 9
Scoring Rubric for Constructed-Response Items 10
Scoring Rubric for Extended-Response Items 10
Answer Key
Unit 1 11
Unit 2 13
Unit 3 14
Unit 4 16
Unit 5 18
Unit 6 20
Unit 7 21
Unit 8 23
Practice Test 24
Reproducible Answer Sheets for Practice Test 26
Reproducible Answer Sheet for Multiple-Choice Items with Answer Key for Practice Test 30
Common Core State Standards for Mathematics, Grade 8 31
Reproducible Skill Analysis Chart for Practice Test 35
Reproducible Cut-Out Tools 37

Acknowledgments

Common Core State Standards © Copyright 2010. National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved.

Answer Key

Unit 1 Exponents and Radicals Lesson 1 Exponents pp. 8-11

1. C [8.EE.1]
2. D [8.EE.1]
3. B [8.EE.1]
4. D [8.EE.1]
5. D [8.EE.1]
6. A [8.EE.1]
7. C [8.EE.1]
8. B [8.EE.1]
9. C [8.EE.1]
10. Constructed response [8.EE.1] $\frac{3}{5}$
11. Constructed response [8.E.1] No. Explanations may vary but should say something like the following: $5^{2}=5 \cdot 5=25$ and $2^{5}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=32,25 \neq 32$.
12. Constructed response [8.EE.1]

Multiplication: $\frac{1}{7} \cdot \frac{1}{7} \cdot \frac{1}{7}$
Division: $1 \div 7 \div 7 \div 7$
13. Constructed response [8.E.1] Yes. Explanations may vary but should say something like the following: $(-3)^{3}=(-3)(-3)$ $(-3)=-27$ and $-3^{3}=-(3)(3)(3)=-27$.
14. Extended response [8.EE.1]

Part A: $10^{2}, 6^{3}, 3^{5}$
Part B: Explanations may vary but should say something like the following: $6^{3}=6 \cdot 6 \cdot 6=$ $216,3^{5}=3 \cdot 3 \cdot 3 \cdot 3 \cdot 3=243$, and $10^{2}=10 \cdot$ $10=100$. Since $100<210<243,10^{2}<6^{3}<3^{5}$
15. Extended response Part A: $\frac{1}{81}$
Part B: No. Explanations may vary but should say something like the following: $(-9)^{2}=81$ and $9^{-2}=\frac{1}{81}, 81 \neq \frac{1}{81}$.

9. Constructed response [8.EE.1]
$64 \quad 2^{3} \cdot 2^{(4-1)}=2^{3} \cdot 2^{3}=2^{(3+3)}=2^{6}=64$
10. Constructed/response [8.EE.1]

Yes. Explanlations nay vary but should say something like the following: $\frac{\left(3^{-2}\right)^{2}}{3^{-3}}=\frac{3^{-4}}{\beta^{-3}}=$ $3^{-4-(-3)}=3^{-4+3}=3^{-1}=\frac{1}{3}$
11. Extended response [8.EE.1]

Part A: 256
Pâan B: Answers may vary Example: $\frac{4^{6}}{4^{2}}$
12. Extended response [8.EE.11]

Part A: 9
$\left(\frac{3^{0}}{3^{2}}\right)^{-1}=\left(3^{0-2}\right)^{1}=\left(3^{-2}\right)^{-1}=3^{2}=9$
Part B: Yes. Explanations may vary but should say something rike the following: Troy's value
will be $\left(\frac{3^{0}}{3^{2}}\right)^{-1}=\left(3^{0-2}\right)^{-1}=\left(3^{-2}\right)^{-1}=3^{2}=9$.
Marni's value will be $\left(\frac{3^{0}}{3^{2}}\right)^{-1}=\left(\frac{3^{0(-1)}}{3^{2(-1)}}\right)=\frac{3^{0}}{3^{-2}}=$ $3^{0-(-2)}=3^{2}=9$.
Lesson 3 Scientific Notation pp. 16-19

1. C [8.EE.3]
2. D [8.EE.3]
3. B [8.EE.3]
4. A [8,EE.3]
5. C [3.EE.3]
6. C [8.EE.3]
7. B [8.EE.3]
8. Constructed response [8.EE.3]
1.345×10^{7}
9. Constructed response [8.EE.3]
0.00000593
10. Constructed response [8.EE.3]
$1.8 \times 10^{-27} \mathrm{~kg} \quad 2,000 \times 9.0 \times 10^{-31}=1.8 \times$ $10^{4} \times 10^{-31}=1.8 \times 10^{-27}$
11. Constructed response [8.EE.3]
$1,000,000 \quad 2.0 \times 10^{4} \div 2.0 \times 10^{-2}=$ $(2.0 \div 2.0) \times\left(10^{4} \div 10^{-2}\right)=$ $1 \times 10^{6}=1,000,000$
12. Extended response [8.EE.3]

Part A: 300,000
Part B: Explanations may vary but should say something like the following: An elephant weighs about 228,000 ounces. A mouse weighs about 0.73 ounce. I rounded these amounts to compatible numbers and divided: $225,000 \div 0.75=300,000$.

Common Core State Standards for Mathematics, Grade 8

The Number System them by rational numbers.

1. Understand informally that every number has a d rational numbers are those with necimal an numbers are those with decimal expansions that terminate in Os or eventually repeat. Know that other numbers are called irrational.
2. Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of $\sqrt{2}$, show that $\sqrt{2}$ is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.

Expressions and Equations 8.EE

Work with radicals and integer exponents.

1. Know and apply the properties of intege exponents to generate equivalent numerical expressions. For example, $3^{2} \times 3^{-5}=3^{-3}=$ $\frac{1}{3^{3}}=\frac{1}{27}$.

2. Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of smalk perfect squares and cube roots of small perfect qubes. Know that $\sqrt{2}$ is irrational.
3. Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express hoyvany times as much one is thin the other. For example, estimate the population of the United States as 3×10^{8} and the population of the world as 7×10^{9}, and determine that the world population is morethan 20 times larger.
4. Perform operations with mumbers expressed in scientific notation, including probtems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size tormeasurements of very large or very small quantities (e.g., use millimeters per yearfor seafloor spreading). Interpret scientific notation that has been generated by technology.
Understand the connections, between proportional relationships, lines, and linearequations.
5. Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.
6. Usesimilar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.

