Contents

Introduction 3
Suggestions for Use 8
Additional Materials for Review 9
Scoring Rubric for Constructed-Response Items 10
Scoring Rubric for Extended-Response Items 10
Answer Key
Unit 1 11
Unit 2 13
Unit 3 15
Unit 4 17
Unit 5 18
Unit 6 20
Unit 7 21
Practice Test. 24
Reproducible Answer Sheets for Practice Test. 26
Reproducible Answer Sheet for Multiple-Choice Items with
Answer Key for Practice Test 30
Common Core State Standards for Mathematics, Grade 7 31
Reproducible Skill Analysis Chart for Practice Test 36
Reproducible Cut-Out Tools 37

Acknowledgments

Common Core State Standards © Copyright 2010. National Governors Association Center
for Best Practices and Council of Chief State School Officers. All rights reserved.

Answer Key

Unit 1 Ratio, Proportion, and Percent

Lesson 1 Rates pp. 8-11

1. B [7.RP.1]
2. A [7.RP.1]
3. D [7.RP.1]
4. B [7.RP.1]
5. A [7.RP.1]
6. Constructed response [7.RP.1] 20
7. Constructed response [7.RP.1] $\frac{3}{32}$ pound
8. Constructed response
[7.RP.1] $\frac{12}{25}$ of the room painted in 1 hour
9. Constructed response [7.RP.1] 1.6
10. Extended response [7.RP.1]

Part A: $\frac{\frac{1}{4}}{\frac{1}{12}}$ feet per year
Part B: 3 feet. Explanations may vary but should say something like the following: I divided the fraction to find the unit rate:
7. Constructed response [7.RP.2.b] $\frac{4}{1}$
8. Constructed response [7.RP.3] \$15
9. Extended response Part A: Yes
Part B: Explanations may vary but should say something like the following: The recipe ratio s $\frac{3}{2}$.Misty's ratio is $\frac{\frac{3}{4}}{\frac{1}{2}}$, which simplifies
to $\frac{3}{2}$. They are the same.
10. Extended response [7.RP.2.c, 7.RP.3]

Part $A: \frac{4}{3}=\frac{7}{x}$
Part B: $\$ 5.25$. Explarlations may vary but
should say something like the following: I
cross multiplied the numbers in the equation
from part A and solved for x : $4 x=21$, so $x=$
$21 \div 4=\$ 5.25$.

Lesson 3 Proportional Relationships

 $\frac{1}{4} \div \frac{1}{12}=\frac{1}{4} \times \frac{12}{1}=\frac{12}{4}=3$ feet in 1year.11. Extended response Part A: $\frac{\frac{7}{10}}{\frac{1}{6}}$
Part B: 2.1 miles. Explanations may vary but should say something like the following: First I divided the fraction from part A to firrd the unit rate: $\frac{7}{10} \div \frac{1}{6}=\frac{7}{10} \times \frac{6}{1}=\frac{12}{10}=4.2$ miles in 1 hour. Then I multiplied the unit rate by the time: $4.2 \times \frac{1}{2}=2.1$ miles.

Lesson 2 Solving Proportions

1. B [7.RP.2.b]
2. D [7.RP.2.c]
3. C [7.RP.2.a]
4. A [7.RP. 3$]$
5. D [7.RP.3]
6. Constructed response [7.R.P.2.a] $\frac{12}{15}$ and $\frac{16}{20}$

7. Constructed response [7.RP.2.c] $y=25 x$
8. Extended response [7.RP.2.a, c] Part A: Explanations may vary but should say something like the following: The ratio of quarts to square feet for each pair of numbers is the same: $\frac{\frac{1}{2}}{40}=\frac{1 \frac{1}{2}}{120}=\frac{4}{320}=\frac{6}{480}=\frac{1}{80}$.
Part B: $y=80 x$. Explanations may vary but should say something like the following: In this relationship, the area covered is proportional to the number of quarts used. So y represents the area and x represents the quarts. Then $\frac{40}{\frac{1}{2}}=80$, so the equation is $y=80 x$.

Common Core State Standards for Mathematics, Grade 7

Ratios and Proportional Reasoning
Analyze proportional relationships and use them to solve real-yvorld and mathematical problems.

1. Compute unit rates associated with ratios of fractions, including ratios of lengths, areas, and other quantities measured in like or different units. For example, if a person walks $\frac{1}{2}$ mile in each $\frac{1}{4}$ hour, compute the unit rate as the complex fraction $\frac{\frac{1}{2}}{\frac{1}{4}}$ miles per hour, equivalenfly
2 miles per hour.
2. Recognize and represent proportional relationships between quantities.
a. Decide whether two quantities are in proportional relationship, e.g., by testing for equivalent ratios in a table orgraphing on a coordinate plane and observing whether the graph is a straight line through the origin.
b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationshins.
c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constarnt price, p, the reatitionship between the total cost and the number of items can be expressed as $t=p n$.
d. Explain what apooint (x, y) on a graph of a proportional relationship means in terms of the situation, with special attention to the points (0,0) and ($1, r$), where r is the unit rate.
3. Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest,/tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease,

The Number System
Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.

1. Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtkaction on a horizontal or vertical number line diagram.

a. Describe sityations in which opposite quantities combine to make 0. For example, a hydrogen atom has 0 charge because its two consfituents are oppositely charged.
Understand $p+q$ as the number located a distance $|q|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.

рәцt!!шиәd ио!̣ңеэ!!dnの

