Table of Contents

	Introduction.	• • • • • • • • • • • • • • • • • • • •		5
Unit 1	1 Exponents ar	nd Radicals.		7
	8.EE.1	Lesson 1	Exponents	8
	8.EE.1	Lesson 2	Laws of Exponents	12
	8.EE.3	Lesson 3	Scientific Notation	16
	8.EE.4	Lesson 4	Operations with Scientific Notation	20
	8.EE.2	Lesson 5	Radicals	24
		Review	Exponents and Radicals	28
Unit 2	2 Real Number	S		31
	8.NS.1	Lesson 1	Rational Numbers	32
	8.NS.1, 8.NS.2	Lesson 2	Irrational Numbers	36
		Review	Real Numbers	40
Unit 3	3 Linear Relation	onships		43
	8.EE.5, 8.EE.6	Lesson 1	Proportional Relationships	44
	8.EE.6	Lesson 2	Graphing Linear Relationships	48
	8.EE.7.a	Lesson 3	Solving Linear Equations	52
	8.EE.7.a, b	Lesson 4	More Solving Equations	56
		Review	Linear Relationships	60
Unit 4	4 Systems of Li	near Equat	ions	63
	8.EE.8.a, b	Lesson 1	Solving Systems of Equations Graphically	64
	8.EE.8.b	Lesson 2	Solving Systems of Equations by Elimination	68
	8.EE.8.b	Lesson 3	Solving Systems of Equations by Substitution	72
	8.EE.8.c	Lesson 4	Problem Solving with Systems of Equations	76
		Review	Systems of Linear Equations	80
Unit 5	5 Functions			83
	8.F.1, 8.F.2	Lesson 1	Function Tables	84
	8.F.1, 8.F.2	Lesson 2	Equations of Functions	88
	8.F.1, 8.F.2, 8.F.3, 8.F.5	Lesson 3	Graphs of Functions	92
	8.F.3, 8.F.4	Lesson 4	Linear Functions	96
		Review	Functions	100

Unit 6 Geor	netry, Part 1			103
8.G.1.	.a, b, c; 8.G.3	Lesson 1	Translations	104
8.G.1.	.a, b, c; 8.G.3	Lesson 2	Reflections	108
8.G.1.	.a, b, c; 8.G.3	Lesson 3	Rotations	112
8.G.3	l	esson 4	Dilations	116
8.G.2,	, 8.G.4	Lesson 5	Congruence and Similarity	120
8.G.5	l	Lesson 6	Angle Relationships	124
	1	Review	Geometry, Part 1	128
Unit 7 Geor	netry, Part 2			131
8.G.6	l	esson 1	Proving the Pythagorean Theorem	132
8.G.6,	, 8.G.7 l	Lesson 2	Applying the Pythagorean Theorem	136
8.G.8	l	esson 3	Finding Distance Between Points	140
8.G.9	l	esson 4	Volume of Solid Figures	144
	[Review	Geometry, Part 2	148
Unit 8 Stati	stics and Pro	bability		151
8.SP.1	L	Lesson 1	Scatter Plots	152
8.SP.2	, 8.SP.3	Lesson 2	Lines of Best Fit	156
8.SP.4	l	Lesson 3	Two-Way Tables	160
	[Review	Statistics and Probability	164
Practice Tes	st			167
Glossary				183

LESSON 3

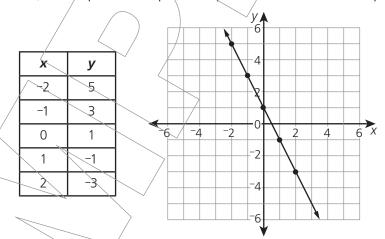
Graphs of Functions

8.F.1, 8.F.2, 8.F.3, 8.F.5

Coordinate points are written in the form (x, y), where x is the input and y is the output.

The graph of a linear function is a straight line. The graph of a nonlinear function is a curved line.

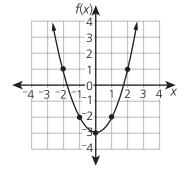
The equation of a linear function is in the form y = mx + b, where m represents the slope and b represents the y-intercept of the line.


A function is increasing if it moves upward from left to right. It is decreasing if it moves downward from left to right.

A linear function is either increasing everywhere or decreasing everywhere. A nonlinear function can increase and decrease over different intervals, or values, of x.

A function represented as an equation or in table form can also be represented as a graph. The *x*-coordinates represent the input. The *y*-coordinates represent the output.

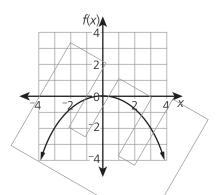
Draw the graph of y = -2x + 1.


Make a table of values to find coordinate points for the graph. Choose any *x*-value for the input and find the corresponding *y*-value, or output. Then plot the points on a coordinate plane.

Functions can be linear or nonlinear. A **linear function** is one where it has the same change in *y*-values for each change in *x*-values. A **nonlinear function** has varying changes in *x*- and *y*-values.

Draw a graph of the function represented by this table of values. Explain whether the function is linear or nonlinear.

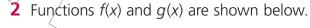
х	f(x)
-2	1
-1	-2
0	-3
1	-2
2	1

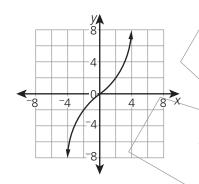


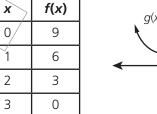
This function is nonlinear because it is not a straight line.

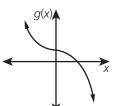
Read each problem. Circle the letter of the best answer.

SAMPLE Which statement best describes the graph of this function?


- A It increases everywhere.
- **B** It decreases everywhere.
- **C** It decreases for all values of *x*.
- **D** It increases for negative values of *x*.



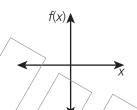



The correct answer is D. This graph shows a nonlinear function that both increases and decreases. The graph increases for all negative values of x since it moves upward from left to right for these values. It decreases for all positive values of x since it moves downward from left to right for these values.

1 Which table of values matches this graph?

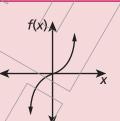
A

B

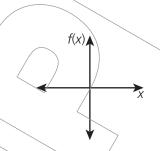

х	У	C	Х	y
-2	2 /		-2	-8
-1	1		-1	-1
1	-1		1/	/1-/
2	-2		2	8

Which statement best describes these functions?

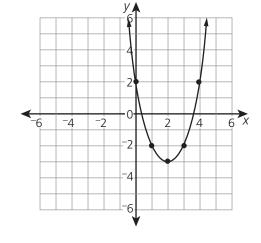
- **A** f(x) and g(x) are nonlinear.
- **B** f(x) is nonlinear and g(x) is linear.
- **C** f(x) and g(x) increase everywhere.
- **D** f(x) and g(x) decrease everywhere.


Read each problem. Write your answer.

SAMPLE The function f(x) is nonlinear and it increases for all values of x. On the coordinate plane at the right, draw a graph that could represent f(x).

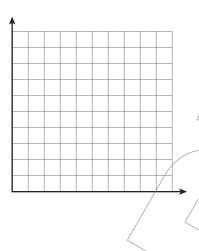


A nonlinear graph is a curved line. A graph that increases for all values of x moves upward from left to right. The graph shown here satisfies both of these conditions.


3 The function f(x) is linear and it decreases for all values of x. On the coordinate plane at the right, draw a graph that could represent f(x).

4 The surface area of a cube is represented by the function $A(s) = 6s^2$, where s is the side length of the cube. Explain whether this function is linear or nonlinear.

5 For which values of *x* is the function graphed here decreasing?


Answer

Read the problem. Write your answer to each part.

6 The function f(x) = 0.6x shows the relationship between the original price, x, in dollars, and the discounted price, f(x), in dollars, of all clearance items at Max's Music Store.

Part A Graph this function on the coordinate plane below,

Part B The table of values below shows the relationship between the original price, x, and the discounted price, f(x), of all clearance items at Timmy's Tunes.

X	20	25	30	35 /
f(x)	8	10	12	14

Which store has a better discount, Max's Music Store or Timmy's Tunes? Explain how you know.

Find the discount factors for each store. Compare the change in f(x)-values to the change in x-values.