Introduction 3
Format of Books 4
Suggestions for Use 7
Annotated Answer Key and Extension Activities 9
Reproducible Tool Set 183

Objective

To distinguish between linear and nonlinear functions and to solve problems using linear functions

(1) Introduction

Review linear equations, focusing on equations in slope-intercept form. Define a linear function as any function for which the graph is a straight line. A linear function has an equation that can be written in slopeintercept form. Identify the linear function from the given examples. Work through the second sample item to help students use a table to determine the equation of a function and then graph the function. Review how to use the slope formula.

Think About It

Students should recognize real-life situations that \&an be represented with a linear relationship. For example, the relationship between the number of pounds of apples and the total cost is a linear relationship.

Common Core State Standards

8.F.3 Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line, give examples of functions that are not linear.
8.F. 4 Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two ($(x, y$) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

Vocabulary

linear function: a fynction that has the same
change in $/ x$-values for fach change in x-yalues. Its graph is a straight line.
slope: the steepress of a line that shows how the change in one variable relates to the change in the other variable
\boldsymbol{y}-intercept: the point $(0, b)$ where a line intersects the y-axis

(2) Focused Instruction

Many real-life situations can be modeled with a linear function. Think about the relationship between the variables and the constants in the situation.
$>$ The Parker family went camping. The campground charged an entrance fee of $\$ 20$ and $\$ 10$ per night. Write a function to determine the total cost, y, for a camping trip for x nights.
How much does the campground charge per night? $\$ 10$
How much does the campground charge for entrance? \$20
What does x represent in this problem? the number of nights spent camping

(3) Guided Practice

Students should complete the Guided Practice section on their own. Offer assistance as needed, pointing out the reminder and hint boxes along the right side of the page.

Independent Practice Answer Rationales

1 PART A The formula comparing temperature is written in the slope-intercept form, $y=m x+b$. So 1.8 is m, the slope or rate of change.

PART B The Fahrenheit temperature when the Celsius temperature is 0° is the same as the y-intercept. When solving for the y-intercept, set x, or C, equal to $0: F=(1.8)(0)+32 ; F=0+32=32$.
PART C Substitute the value of C to find F :

${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$
-20	$\begin{aligned} & F=(1.8)(-20)+32 \\ & F=-36+32 \\ & F=-4 \end{aligned}$
-10	$\begin{array}{\|l} F=(1.8)(-10)+32 \\ F=-18+32 \\ F=14 \\ \hline \end{array}$
0	$\begin{aligned} & F=(1.8)(0)+32 \\ & F=0+32 \\ & F=32 \end{aligned}$
25	$\begin{aligned} & F=(1.8)(25)+32 \\ & F=45+32 \\ & F=77 \end{aligned}$
50	$\begin{aligned} & F=(1.8)(50)+32 \\ & F=90+32 \\ & F=122 \end{aligned}$

PART D A linear relationship is in the form $y=m x /+$ b, where m is the slope and b is the y intercept. The formula comparing temperatures is in this form, which means that it is a linear relationship.
2 A table that shows a linear relationship has a constant change. Choice A is represented by the equation $y=x^{2}$, which is not a linear relationship. Choice β has a constant change of 3 because each y-value is 3 more than the corresponding x-value. In choige C, the slope between two points is not consistent $\cdot \frac{15-10}{5-2}=\frac{5}{3} \cdot \frac{19-15}{8-5}=\frac{4}{3}$. In choice D, the relationship is modeled by the equation $y=\sqrt{x}$, so it is not a linearfunction. Choice B is correct.

3 PART A To write an eqxation in the form $y=$ $m x+b$, find the rate of chrange for x by using two points and the slope formula. Iry this relationship, x is represented by h and y is represented by C. Using the points (2,110) and $(2,170)$, fird the slope: $\frac{170-110}{2-1}=\frac{60}{1}=60$. The slope is 60 . Find b by substituting two given values and solving for $b: 110=60(1)+b ; 110=60+b ; 50=b$. The y-intercept is 50 , so the equation is $C=60 h+50$.
PART B Use the equation from Part A and solve for C when h is equal to $2 \frac{1}{4}: C=60\left(2 \frac{1}{4}\right)+50 ; C=$ $135+50 ; c=185$. The cost is $\$ 185$ when the auto mechanic works for $2 \frac{1}{4}$ hours.
4 To write an equation/ determine which number is the rate of change and which number is the initial value. A function can be written in the form of $y=m x+b$. If Leonard makes $\$ 15$ per hour, the relationship is modeled by the equation $y=15 x$. Look for an equation equivalent to this: $y-15 x=0$. Alexander has $\$ 150$, so this is the y-intercept. The savings increases by $\$ 50$ per month, or $\$ 50 x$. This relationship is shown by the equation $y=50 x+150$, or $y=150+50 x$.
5 To fihd the table that matches the equation, check whether the outputs in each table are able to correctly substitute in the linear equation to equal the input. In choice $A,-1 \neq-2+3$, so it is not correct. In choice $C, 5 \neq-2+3$, so it is not correct. In choice $D,-5 \neq-2+3$, so it is not correct. The only table that matches the equation is choice B : $1=-2+3 ;-1=-4+3 ;-3=-6+3 ;-5=-8+3$.
6 To find the rate of change, use the formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ with the given points: $\frac{26-5}{9-2}=\frac{21}{7}=3$. The slope of the line is 3 .

Extension Activity

Distribute blank coordinate planes to students. Have each student draw a line on the coordinate plane (lines must intersect the y-axis). Students should exchange graphs with a partner and find the slope and y-intercept of the graph. They should then write the equation of the line in slope-intercept form.

