Introduction 3
Format of Books 4
Suggestions for Use 7
Annotated Answer Key and Extension Activities 9
Reproducible Tool Set 187

Objective

To compare decimals by/using place value

Briefly review comparing whole humbers; students should recall that digits in the same places should be compared. Extend the discussion to pecimal numbers, stressing that they are compared in the same way as whole numbers. Then work through the examples on the page. Discuss the use of models, such as number lines or grids, to visually compare the decimals.

Think About It

Students should recognize that they can add a placeholder zero to give the decimals being compared the same number of places. For example, 0.1 becomes 0.10 and then is easier to compare to 0.15 . Since 5 is greater than $0,0.15$ is greater than 0.1 .

Common Core State Standard

4.NF. 7 Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols $>,=$, or $<$, and justify the conclusions, e.g., by using a visual model.

(2) Focused Instruction

First, students compare two decimals with the same number of places. They align the numbers on the decimal points, identify the places, and compare the digits in those places to determine which number is greater. They then write a comparison using the symbol < .
Next, students compare two decimals with different numbers of places. They model each number on a grid, converting the number in tenths to hundredths, and compare the models.
Finally, students locate three decimals on a number line to order them from least to greatest.
Conclude the Focused Instruction section by having students answer two questions involving comparing and ordering decimals.

(3)
 Guided Practice

Students should complete the Guided Practice section on their own. Offer assistance as needed, pointing out the reminder and hint boxes along the right side of the page.

Connections to Standards for Matnematical Practice

- Make sense of problems and persevere in solving them.
- Reason abstractly and quantitatively.
- Model with mathematics.
- Look for and make use of structure.

Independent Practice Answer Rationales

1 Estimate the values of the points by their approximate distances from/the/tenths marks. The point on the left is about halfyway betyveen 0.2 and 0.3 ; the point on the right is between 0.8 and 0.9 , but closer to 0.9 . Choice A is incor ect because the points are not directly on either 0.2 or 0.8 . Choice B is incorrect; 0.35 is top great to be the leftmost pointand the comparison also uses the incorrect symbol. Cheice C is incorrect; the statement uses the correct symboland 0.88 could be the rightmost point, but 0.36 is too far to the right for the indicatedpoint. Choice D is correct; the comparison names plausible values for the points and uses the correct symbol, <, +o compare them.
2 The first comparison is false; 2 tenths is less than, not greater than, 3 tenths. The second comparison is true; comparing the tenths, 0 is less than 1. The third comparison is false; 8 tenths is less than, not greater than, 9 tenths. The fourth comparison is false; the 2 s occupy different places, and 2 tenths is greater than, not equal to, 2 hundredths. The fifth comparison is true; the digits in the tenths places are the same, but in the hundredths places, the 3 is greater than the 0 . The sixth comparison is true; the 7 occupies the tenths place in both numbers, and the 0 in the hundredths does not change the value because 7 tenths is equivalent to 70 hundredths.

3 PARTS A and B A centimeter is 0.01 meter, or 1 hundredth of a meter. So 35 centimeters equal 0.35 meter. A decimeter is 0.1 meter, or 1 tenth of a meter. So 5 decimeters equal 0.50 meter. The meter stick is marked with centimeters and every tenth mark is labeled and is equal to 1 decimeter. So 35 centimeters goes between 30 and 40 and 5 decimeters goes on the 50 centimeter mark. Since 50 centimeters is greater than 35 centimeters, 5 decimeters is the greater measurement.

4 Like fractions, decimals can only be compared if they refer to the same whole. Although each person has a whole with 100 equal parts, Sanjay's bag is 4 pounds, and Neela's bag is 1 pound. So a hundredth of Sanjay's bag will be greater than a hundredth of Neela's bag.

5 PART A Each grid shows hundredths, and the weights are given in hundredths of a ton. On the first grid, show 0.57 ton by shading 57 squares. On the second grid, represent 0.65 ton by shading 65 squares. On the third grid, show 0.09 ton by shading 9 squares. The decimals can be compared because they are all parts of a whole made up of 100 parts.
PARTS B and C The tenths place determines the size of these decimals and 0 tenths is less than 5 tenths is less than 6 tenths. Chuck's mistake was reading 0.09 as 9 tenths, rather than 9 hundredths. In order, the numbers are $0.09<0.57<0.65$.

6 Change the decimal 0.4 to the equivalent decimal in hundredths, 0.40. A decimal between 0.40 and 0.46 must have a 4 for the tenths digit and a hundredths digit between 0 and 6 , that is $1,2,3,4$, or 5 .

Extension Activity

Prepare a set of cards with decimals in tenths from 0.1 to 0.9 and decimals in hundredths from 0.01 to 0.99. Prepare a spinner with three sections labeled $>,<$, and $=$. Mix the cards and deal five to each student in a small group. Place the restfacedown I and turn over the first. The first student spins the spinner, reads the symbol, and places a card that , meets the conditions on top of the face-up card. For | example, if the card is 0.35 and the symboh is $>$, the I student places a card that is greater than 0.35 and I then takes another card from the deck. Students take turns spinning a symbol and placing a card. If a student does not have a card to complete the comparison, he or she returns/a card to the bottom of the deck and takes apiother as play passes to the I left. Play continues until the entire deck has been used or no further comparisons can be made.

