TABLE of CONTENTS

Introduction 3
Format of Books 4
Suggestions for Use 7
Annotated Answer Key 9
UNIT 1 9
UNIT 2 27
UNIT 3 36
UNIT 4 51
UNIT 5 69
UNIT 6 84
UNIT 7 105
UNIT 8 120
Scoring Rubrics 129
Next Generation Mathematics Learning Standards Crosswalk, Grade 8 131

Crosswalk: From the New York State Education Department. New York State Next Generation Mathematics Learning Standards Grade 8 Crosswalk. Internet. Available from www.nysed.gov/curriculum-instruction/ teachers/next-generation-mathematics-learning-standards-crosswalks; accessed 8 January 2019.

ISBN 978-1-5240-1158-1
Copyright © 2019 The Continental Press, Inc.
No part of this publication may be reproduced in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. All rights reserved. Printed in the United States of America.

NYS NEXT GENERATION MATHEMATICS LEARNING STANDARDS

8.EE. 8 Analyze and solve pairs of simultaneous linear equations.
8.EE.8.a Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously. Recognize when the system has one solution, no solution, or infinitely many solutions.
8.EE.8.b Solve systems of two linear equations in two variables with integer coefficients: graphically, numerically using a table, and algebraically. Solve simple cases by inspection.

Introduction

The lesson reviews how to solve systems of kinear equations by the substitution method. Read or have a volunteer read through the lesson and discuss the examples with the class. Guide students to understand that the object is to replace a variable with its value in terms of the other variable. Emphasize that the result is an equation in one variable, which they can solve for the value of that variable.

Guided Practice

The guided practice page provides sample multiple choice and constructed answer problems for the students to complete on their own Each item is accompanied by a hint or reminder that guides the student's thinking about how to solve the problem. Offer assistance as needed. When students have completed the items, review the answers and solution processes as a class.

[^0]

It doesn't mater which
equation or /hich variable, x fry y y y u
choose to solve for Y Y choose to solve for. You
should dill be able to find the solution. find the solution. It it easier to solve for a
variable that has 1 as a variable that has 1 as a
coefficient.

Answer Rationales

1. A solution is correct if it makes both equations in the system true. Substitute $(-5,3)$ into each equation: $-5+3=-2 \rightarrow-2=-2$ and $-2(-5)+$ $3=13 \rightarrow 10+3=13 \rightarrow 13=13$. The solution makes both equations true. Choice A is correct. (8.EE.8.b)
2. The second equation is in terms of y, so substitute the expression that equals y for y in the first equation: $x+4 y=3 \rightarrow x+4(x-8)=3 \rightarrow x+$ $4 x-32=3 \rightarrow 5 x=35 \rightarrow x=7$. Substitute the value of x into the second equation to find the value of y : $y=7-8 \rightarrow y=-1$. The solution to the system of equations is $(7,-1)$. Choice D is correct. (8.EE.8.b)
3. Substitute the expression equal to x for x in the first equation: $y+3=2 y-1$. Simplify to $3 \Rightarrow$ $y-1 \rightarrow 4=y$. Use this value of y in the second
 equation to find the value of x : $x=4+3 \rightarrow x=7$. The solution is (7,4). Choice D is correct. (8.EE.8.b)
4. First, rewrite the first equation in terms of x : $2 x \div$ $2=(-6 y+4) \div 2 \rightarrow x=-3 y+2$. Substitute the expression equal to x for x in the second equation: $3(-3 y+2)+9 y=6 \rightarrow-9 y+6+9 y=6$. This simplifies to $6=6$. So any value of x and y will make the system true, and the system has infinitely many solutions. Choice D is correct. (8.EE.8.a, b)
5. Since $y=x+2$, substitute $x+2$ for y in the first equation: $x=-3(x+2)-2 \rightarrow x=-3 x-6-2$ $\rightarrow 4 x=-8 \rightarrow x=-2$. Use this vatue for x in/the second equation: $y=-2+2=0$. The solution is $(-2,0)$. Choice B is correct. (8.EE.8.b)
6. since $3 x+3 y=0$, then $3 x=-3 y$, or $x=-y$. Substitute $-y$ for x in the first equation: $-(-y)-$ $2 y=-3 \rightarrow y-2 y=-3 \rightarrow-y=-3$, so $y=3$. The value of x is $-y$, so x is -3 . The solution is $(-3,3)$.
(8.EE.8.b)
7. Parts \mathbf{A} and \mathbf{B} The first equation can be rewritten in terms of y as $y=-x-2$. Substitute this expression for y in the second equation: $2 x+$ $(-x-2)=3 \rightarrow 2 x-x-2=3 \rightarrow x-2=3 \rightarrow$ $x=5$. Substitute the value of x in the first equation to find y : $5+y=-2 \rightarrow y=-7$. The solution is (5, -7). (8.EE.8.b)
8. Part A The expression $2 y+2$ is equal to x, not y; Lamont cannot solve for the value of one variable if the equation contains two variables. (8.EE.8.b)

Part B Substitute the expression that equals x for x in the second equation: $y=2 y+2+1 \rightarrow y=$ $2 y+3 \rightarrow-y=3$, so $y=-3$. Substitute -3 for y in the second equation: $-3=x+1 \rightarrow-4=x$. So the solution is $(-4,-3)$. (8.EE.8.b)

[^0]:

