THBRTOFCONHENTS

About Finish Line New York Math 5
UNIT 1: Big Ideas from Grade 7 7
LESSON 1 7.RP.2.a-d Understanding Proportional Relationships [connects to 8.EE.5] 8
LESSON 2 7.NS.1.d, 2.c Operations with Rational Numbers
[connects to 8.EE.7.a, b] 17
LESSON 3 7.G. 5 Angle Relationships [connects to 8.G.5] 24
LESSON 4 7.G. 1 Scale and Scale Drawings [connects to 8.G.3, 4] 31
UNIT 1 REVIEW 38
UNIT 2: The Number System 43
LESSON 5 8.NS. $1 \quad$ Understanding Rational and Irrational Numbers 44
LESSON 6 8.NS.1, 2 Irrational Numbers 51
UNIT 2 REVIEW 58
UNIT 3: Expressions and Equations 62
LESSON 7 8.EE. 1 Laws of Exponents 63
LESSON 8 8.EE. 3 Scientific Notation 70
LESSON 9 8.EE. 4 Operations with Scientific Notation 77
LESSON 10 8.EE. 2 Radicals 83
LESSON 11 8.EE. 5 Proportional Relationships 89
LESSON 12 8.EE. 6 Linear Relationships 98
LESSON 13 8.EE.7.a, b Solving Linear Equations 106
LESSON 14 8.EE.8.a, b Understanding Systems of Equations 114
LESSON 15 8.EE.8.b Solving Systems of Equations 121
LESSON 16 8.EE.8.c Solving Problems Using Systems of Equations 128
UNIT 3 REVIEW 135
UNIT 4: Functions 141
LESSON 17 8.F. Understanding Functions 142
LESSON 18 8.F.3, 4 Linear Functions 151
LESSON 19 8.F.3, 5 Graphs of Functions 159
LESSON 20 8.F. 2 Comparing Functions 168
UNIT 4 REVIEW 176
UNIT 5: Geometry 181
LESSON 21 8.G.1.a-c, 3 Translations 182
LESSON 22 8.G.1.a-c, 3 Reflections 191
LESSON 23 8.G.1.a-c, 3 Rotations 200
LESSON 24 8.G. 3 Dilations 208
LESSON 25 8.G. 2 Congruent Figures 216
LESSON 26 8.G. 4 Similar Figures 225
LESSON 27 8.G. 5 Angle Relationships 235
LESSON 28 8.G. 6 Understanding the Pythagorean Theorem 244
LESSON 29 8.G. 7 Using the Pythagorean Theorem 251
LESSON 30 8.G. 8 Finding Distance Between Two Points 259
LESSON 31 8.G. 9 Volume 267
UNIT 5 REVIEW 275
UNIT 6: Statistics and Probability 282
LESSON 32 8.SP. 1 Scatter Plots 283
LESSON 33 8.SP. 2 Lines of Best Fit 293
LESSON 34 8.SP. 3 Solving Problems Using Bivariate Measurement Data 302
LESSON 35 8.SP. 4 Two-Way Tables 309
UNIT 6 REVIEW 317
Glossary 323
Flash Cards 329

A function is a rule that relates an input value to an output valure. Each input gives exactly one output. For example, $y=3 x+4$ is a function. Each value of x yields exactly one value of y. The rule that relates the values is that each value of x is 4 more than 3 times the value of x.
The set of input values, or x-values, of a function is the domain. The set/of output values, or y-values, of a function is the range. The rule explains how the range is related to the domain. One way to identify a function is from a set of ordered pairs.

Which of the following sets represents a fynction?
Set 1: $\{(2,3),(2,4) /(2,5),(2,6)\}$
Set 2: $\{(2,4),(3,4),(5,7),(1,4)\}$
In set 1 , the input value 2 is associated vish 3, 4, 5, and 6. Because the
\qquad
In a function, no two inputs, or x-values, are the same. same input value is associated with more than one output value, the relationship is not a function.

In set 2, each input value is associated with exactly one output. So, set 2 represents a function.

Another way to identify a function is from a graph.
Does this graph represent a function?

Each point on the graph is an ordered pair that relates an x-value to a y-value.
You can see that each x-value is associated with only one y-value, so the graph represents a function.

To check if a graph represents a function, you can use the vertical-line test. If a vertical line drawn anywhere on the graph passes through at most one point, the graph represents a function. If a vertical line passes through two or more points, the graph does not represent a function.

Think About It

What is an example of a functional relationship that you may encounter in real life?

Focused Instruction

Some functions follow a specific rule to show how the input changes to the output. Find the rule by looking at the values in the function.

- The table shows the cost for a given number of granola bars in a snack machine.

Number of Granola Bars			2	3
Amount (\$)	0.75		150	2.25

What is the input?

What is the output?

List the given output values. \qquad
What output values) is related to the input value of 1 ? \qquad
What output values) is related to the input value of 2 ? \qquad
What output values) is related to the input value of 3 ? \qquad
Are any input values related to more than one output value? \qquad
Is the elationship for the snack machine a function? \qquad
Look at how the input value changes to get the output value. Is the output
greater than or less than the input? \qquad

By how much does the output change when the input changes by

Write an equation to show the rule that tells how the input/is related to the output. \qquad

Use the tables to compare two relationships.

The tables show the x - and y-values for two different relationships. Which one, if either, represents a function?

RELATIONSHIP A

\boldsymbol{x}	\boldsymbol{y}
5	15
10	30
20	60

Look at the input and output values for relationship A.
Write a set of ordered pairs based on the values in the table.

Are any values of x assøciated with more than one value of y ? Explain.

Does relationship A represent a function?
Look at the input and output values for/relationship B.
Write a set of ordered pairs/based on the values in the table.
Areany values of x associated with more than one value of y ? Explain.

Does equation/B represent a function? \qquad

Use what you know about functions to decide whether or not each/of the following sets of points shows a function. Write yes or no.
$1\{(1,-3),(4,4),(5,8),(6,4)\}$ \qquad

2 | \boldsymbol{x} | 0 | 2 | 4 | 6 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \boldsymbol{y} | 1 | 1 | 1 | 1 | 1 |

3

Solve the following problems.

1 The Miller family owns a bakery. They made a graph of their profits over 10 weeks. Does the graph represent a function? Explain your response.

2 Write a function rule to describe the data in this function table.

Solve the following problems.

1 Which of the following sets are functions? Select all that apply.
A $\{(0,1),(0,2),(0,3),(0,4)\}$
B $\{(0,-1),(-1,0),(-2,5),(-3,-2)\}$
C $\{(1,1),(3,2),(3,3),(5,4)\}$
D $\{(2,3),(3,1),(1,2),(2,1)\}$
E $\quad\{(3,3),(2,2),(1,1),(0,0)\}$
F $\{(3,-1),(4,-1),(5,-1),(6,-1)\}$

2 Which table does not represent a function?

A

x	y
1	4
2	4
3	4

B

x	y
2	3
2	4
2	5

C

D

3 The ordered pairs (x, y) in this table of values do not form a fynction.

IN	OUT
2	1
5	k
7	6
h	9

What could be possible values of h and k ? Explain how you know/

4 Does the graph represent a function? Explain how you know.

5 Look at the set of points below.

$$
\{(1,1)(5,8)(1,5)(10,20)(10,6)(5,3)\}
$$

Part A What is the input?

Answer

What is the output?

Answer

Part B Use arrows to connect the elements of the domain to the range.

Part C Is this relationship a function ? Explain how you know.

6 Jasper wrote this function table.

x	y
-4	-7
-3	-6
-2	-5
-1	-4

Part A Write a function rule that models this relationship.

Answer

Part B What is the value of x when $y=-92$ Explain how you know.

7 Reilly is buying DVDs that cost $\$ 10.00$ each. There is a shipping charge of $\$ 3.95$. The function that represents the total cost of x DVDs is represented by $y=10 x+3.95$. Complete the table to represent this function.

| \boldsymbol{x} | 1 | 3 | 5 | 7 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \boldsymbol{y} | | | | | |

