TABLEOFCONTENTS

About Fir	nish Line I	New York Math	5
UNIT 1: B	ig Ideas f	from Grade 1	7
LESSON 1	1.NBT.2.a–c	Understanding Tens and Ones [connects to 2.NBT.1.a, b]	8
LESSON 2	1.0A.6	Strategies to Add and Subtract [connects to 2.0A.2]	16
LESSON 3	1.MD.1, 2	Length [connects to 2.MD.1, 2]	24
LESSON 4	1.MD.4	Organizing Data [connects to 2.MD.10]	_ 32
		UNIT 1 REVIEW	_ 40
UNIT 2: N	lumber a	nd Operations in Base Ten, Part 1	46
LESSON 5	2.NBT.1.a, b	Place Value	_47
LESSON 6	2.NBT.2	Counting and Skip Counting	_ 55
LESSON 7	2.NBT.3	Reading and Writing Numbers	64
LESSON 8	2.NBT.4	Comparing Numbers	71
		UNIT 2 REVIEW	78
UNIT 3: N	lumber a	nd Operations in Base Ten, Part 2	82
LESSON 9	2.NBT.8	Adding and Subtracting 10 and 100	_ 83
LESSON 10	2.NBT.5, 6, 9	Adding Two-Digit Numbers	91
LESSON 11	2.NBT.5, 9	Subtracting Two-Digit Numbers	_ 99
LESSON 12	2.NBT.7, 9	Adding Three-Digit Numbers	107
LESSON 13	2.NBT.7, 9	Subtracting Three-Digit Numbers	_114
		UNIT 3 REVIEW	121

UNIT 4: C	peration	s and Algebraic Thinking	126		
LESSON 14	2.0A.2	Using Mental Strategies to Add and Subtract	127		
LESSON 15	2.0A.3	Odd and Even Numbers	135		
LESSON 16	2.0A.4	Understanding Arrays with Addition	143		
LESSON 17	2.0A.1	Solving One-Step Word Problems	151		
LESSON 18	2.0A.1	Solving Two-Step Word Problems	159		
		UNIT 4 REVIEW	167		
UNIT 5: M	leasuren	nent and Data	171		
LESSON 19	2.MD.1	Measuring Length	172		
LESSON 20	2.MD.2	Measuring Length in Different Units	181		
LESSON 21	2.MD.3	Estimating Length	- 189		
LESSON 22	2.MD.4	Comparing Lengths	196		
LESSON 23	2.MD.5	Solving Word Problems Using Length	_204		
LESSON 24	2.MD.6	Number Lines and Length	212		
LESSON 25	2.MD.7	Telling Time	219		
LESSON 26	2.MD.8	Word Problems with Money	227		
LESSON 27	2.MD.9	Line Plots with Measurement Data	235		
LESSON 28	2.MD.10	Picture Graphs	_244		
LESSON 29	2.MD.10	Bar Graphs	253		
		UNIT 5 REVIEW	262		
UNIT 6: Geometry 267					
LESSON 30	2.G.1	Recognizing and Drawing Shapes	268		
LESSON 31	2.G.2	Tiling Rectangles	275		
LESSON 32	2.G.3	Partitioning Shapes	282		
		UNIT 6 REVIEW	289		
Glossary					
Flash Cards					

Partitioning Shapes

Introduction

You can **partition** shapes. To partition means you divide shapes into equal shares, or parts. Each share is the same size.

When put together, the equal parts of a shape make the entire **whole.** Some equal parts have special names

You can remember the word *partition* by thinking that the word *part* is a *part* of the whole word: *part*ition.

Sometimes equal shares of the same wholes have different shapes.

These rectangles both show 4 equal shares. Each rectangle is divided into 4 equal parts. Each equal share is one-fourth of the whole rectangle.

When have you had to make equal shares of something? How did you make each part equal?

Focused Instruction

Partition a rectangle into equal parts. Equal parts are the same size.

Mrs. Turner is decorating a bulletin board. She wants to partition it into thirds. How can she divide it?

Think about what *thirds* means.

How many equal parts will there be?

Draw lines to partition the first rectangle into this number of equal parts.

Draw lines to partition the second rectangle into this number of equal parts in a different way.

How many equal parts did you make in each rectangle?

Do the equal parts in the first rectangle look the same as the equal

parts in the second rectangle? _____

Lesson 32

Shapes can be partitioned into different numbers of equal parts. Use special words to name different numbers of equal parts.

> How can the circle be partitioned into equal parts in different ways?

Draw a line to divide the circle on the left into 2 equal parts.

Each part of the circle is called a _

The whole circle is made up of 2 /_____.

Draw lines to divide the circle on the right into 4 equal parts.

Each part of the circle is called a

The whole circle is made up of 4

Are halves equal parts?

Are fourths equal parts?

Do the halves and the fourths of the circle have the same shape?

Use what you know about partitioning shapes to answer these questions.

1 How many equal parts does a circle divided into thirds have?

2 How many halves are in a whole?

