Tixirlgofcontrints

About Finish Line New York Math 5
UNIT 1: Big Ideas from Grade 1 7
LESSON 1 1.nBт.2.a-c Understanding Tens and Ones [connects to 2.nBT.1.a, b] 8
LESSON 2 1.0A. $6 \quad$ Strategies to Add and Subtract [connects to 2.0A.2] 16
LESSON 3 1.MD.1, 2 Length [connects to 2.MD.1, 2] 24
LESSON $4 \quad$ 1.MD. $4 \quad$ Organizing Data [connects to 2.MD.10] 32
UNIT 1 REVIEW 40
UNIT 2: Number and Operations in Base Ten, Part 1 46
LESSON 5 2.nbt.1.a, b Place Value 47
LESSON 6 2.nвт. $2 \quad$ Counting and Skip Counting 55
LESSON 7 2.nbT. 3 Reading and Writing Numbers 64
LESSON 8 2.NBT. 4 Comparing Numbers 71
UNIT 2 REVIEW 78
UNIT 3: Number and Operations in Base Ten, Part 2 82
LESSON 9 2.NBT. 8 Adding and Subtracting 10 and 100 83
LESSON 10 2.NBT.5, 6, 9 Adding Two-Digit Numbers 91
LESSON 11 2.nbT.5, 9 Subtracting Two-Digit Numbers 99
LESSON 12 2.Nвт.7, 9 Adding Three-Digit Numbers 107
LESSON 13 2.NBT.T, 9 Subtracting Three-Digit Numbers 114
UNIT 3 REVIEW 121
UNIT 4: Operations and Algebraic Thinking 126
LESSON 14 2.OA. 2 Using Mental Strategies to Add and Subtract 127
LESSON 15 2.OA. 3 Odd and Even Numbers 135
LESSON 16 2.OA. 4 Understanding Arrays with Addition 143
LESSON 17 2.OA. 1 Solving One-Step Word Problems 151
LESSON 18 2.OA. 1 Solving Two-Step Word Problems 159
UNIT 4 REVIEW 167
UNIT 5: Measurement and Data 171
LESSON 19 2.MD. 1 Measuring Length 172
LESSON 20 2.MD. 2 Measuring Length in Different Units 181
LESSON 21 2.MD. 3 Estimating Length 189
LESSON 22 2.MD. 4 Comparing Lengths 196
LESSON 23 2.MD. 5 Solving Word Problems Using Length 204
LESSON 24 2.MD. 6 Number Lines and Length 212
LESSON 25 2.MD. 7 Telling Time 219
LESSON 26 2.MD. $8 \quad$ Word Problems with Money 227
LESSON 27 2.MD. 9 Line Plots with Measurement Data 235
LESSON 28 2.MD. 10 Picture Graphs 244
LESSON 29 2.MD. 10 Bar Graphs 253
UNIT 5 REVIEW 262
UNIT 6: Geometry 267
LESSON 30 2.G. 1 Recognizing and Drawing Shapes 268
LESSON 31 2.G. 2 Tiling Rectangles 275
LESSON 32 2.G.3 Partitioning Shapes 282
UNIT 6 REVIEW 289
Glossary 294
Flash Cards 305

Partitioning Shapes

Introduction

You can partition shapes. To partition means you divide shapes into equal shares, or parts. Each share is the same size. When put together, the equal parts of a shape make the entire whole. Some equal parts have special names.
Half
2 equal parts $=1$ whole
2 halves make a whole.
3 equal parts $=1$ whole
3 thirds make a whole.
4 equal parts $=1$ whole
4 fourths make a whole.

Sometimes equal shares of the same wholes/have different shapes.
These rectangles both show 4 equal shares. Each rectangle is divided into 4 equal parts. Each equal share is one-fourth of the whole rectangle.

Think About It

When have you had to make equal shares of something? How did you

Focused Instruction
Partition a rectangle into equal parts. Equal parts are the same size.

Mrs. Turner is decorating a bulletin board. She wants to partition it into thirds. How can she divide it?

How many equal parts will there be?
Draw lines to partition the first rectangle into this number of equal parts.
Draw lines to partition the second rectangle into this number of equal parts in a differentway.

How many equar parts did/you make in each rectangle? \qquad

Shapes can be partitioned into different numbers of equal parts.

 Use special words to name different numbers of equal parts.How can the circle be partitioned into equal parts in different ways?

Draw a line to divide the circle on the left into 2 equal parts.
Each part of the circle is called a

The whole circle is made up of 2

Draw lines to divide the circle on the right into 4 equal parts.
Each part of the circle is called a
 .

The whole circle is made up of 4
Are halves equal parts? \qquad

Are fourths equal parts?

Do the halves/and the fourths of the circle have the same shape? \qquad

Use what you know about partitioning shapes to answer these questions.

2 How many halves are in a whole? \qquad

Solve the following problems.

1 Gisa wants to cut this piece of paper into halves.

Part A How many equal parts will Gish have after she cuts the paper?
Answer \qquad equal parts

Part B Draw a line on the piece of papery to partition it into halves.

2 Fa divided this rectangle into 3 parts as shown.

There are two ways to partition the paper correctly.

Part A Did Fa correctly show thirds in this rectangle?
Explain your answer.

Part B Divide Fia's rectangle into thirds.

Solve the following problems.

1 Which figures show thirds?
A

B

2 Which rectangle is not divided into thirds?

B

D

C

D

3 Atil divided this circle as shown here.

What part did he divide it into?

Answer \qquad
4 Write the word from the box that pnatches each circle.

5 These rectangles are the same size.

Part B How many fourths make up a whole rectangle? Explain

