Introduction 3
Format of Books 4
Suggestions for Use 7
Annotated Answer Key and Extension Activities 9
Reproducible Tool Set 175
cas: 5.MD.5.a, b
Volume of Rectangular Prisms

(11) Introduction

The area of a rectangle or square is found by multiplying the length and width. Area is the measurement of a flat or two-dimensional figure in square units. Find the volume of a rectangular prism or cube by using the three dimensions of the figure: length, width, and height.

What is the volume of a stack of paper that is 2 inches high and made of sheets measuring 11 inches long by 8 inches wide?

Find the area of one sheet of paper: 11 inches \times 8 inches $=88$ square inches
1 in. A stack of paper has a height of 2 inches.

Use the area of one sheet of paper times the height of the stack to find the volume of the stack.

$$
\begin{gathered}
V=l \times w \times h \\
V=11 \times 8 \times 2=88 \times 2 \\
V=176 \text { in. }^{3}
\end{gathered}
$$

The volume of the stack of paper is 176 cubic inches.

Objective

To find the volume of reetangutar prisms by using the volume formula

(12.) Introduction

Review the formula for area of a rectangle with students. Show them, using the diagram on the student book page, how area is related to volume. Demonstrate how the volome formula is a short cut to counting unit cubes.

Think skout It

Sturdents should recognize that the area formula for a rectangle $(A=I \times w)$ is actually part of the volume formula for a rectangular prism $(V=I \times w \times h)$. So if the area of the base is already known, it can be substituted for $I \times w$ in the formula.

Common Core Learning Standards

5.MD. 5 Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.
a. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication.
b. Apply the formulas $V=I \times w \times h$ and $V=$ $B \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems.

(2) Focused Instruction

Students will work through two problems to find the volumes of rectangular prisms. They will identify the length, width, and height for each prism and use the volume formula. In the second problem, they must be aware of the part of the diagram for which they are finding the volume. They need to calculate the height of the prism using the given measurements on the diagram.
Conclude the Focused Instruction section by having students answer two questions about volume.

Connections to Standards fior Mathematical Practice

- Make sense of problems and persevere in solving them.
- Model with mathernatics.
- Use appropriate tools strategjcally.
- Attend to precision.
- Look for and make use of structure.

3 PART A Find the volume of each crate using the formula, $V=I \times w \times h$. Crate 1 has a volume of $20 \times 20 \times 20=8,000$ in. 3. Crate 2 has a volume of $50 \times 10 \times 10=5,000$ in. 3, so crate 1 has a greater volume.

PART B To find the number of baseballs that will fit in crate 1, divide the volume of the crate by the volume of each baseball box. Crate 1 can fit $8,000 \div 100=80$ baseballs. The cost per ball is $\$ 0.50$, so it will cost $80 \times \$ 0.50=\$ 40.00$ to ship the baseballs.

4 Find the volume of each DVD set first using the formula $V=I \times w \times h$. The volume of the family set is $16 \times 4 \times 9=64 \times 9=576 \mathrm{in}^{3}$. The volume of the sci-fi set is $6 \times 9 \times 14=54 \times 14=756 \mathrm{in}^{3}$. The volume of the sci-fi set is greater by 756 $576=180 \mathrm{in}^{3}$.

5 The sugar cubes are the same height as the box 1 cm . The length of the box is equal to 3 sugar/ cubes. The width of the box is equal to 3 sugar cubes. If the box is filled with $1-\mathrm{cm}$ sugar cubes, it will look like the box shown below.

6 PART A Divide the length, width/and height into single units to draw the model of $1-\mathrm{ft}$ cubes. The model should have a length of 6 unit cubes, a width of 3 unit cubes, and a height of 3 unit cubes.
PART B To find the volume in yards, convert the dimensions to yards. Since 1 yard equals 3 feet, divide the number of feet by 3 to find the number of yards per dimension: $6 \mathrm{ft} \div 3=2 \mathrm{yd}, 3 \mathrm{ft} \div 3=$ $1 \mathrm{yd} ; 3 \mathrm{ft} \div 3=1$ yd. The dimensions are 2 yards/ by 1 yard by 1 yard. Use the volume formula $V=l \times w \times h$ to find the volume of the ant tank: $2 \times 1 \times 1=2$ cubic yards.

Extension Activity

For homework, have students find the volume of a rectangular prism in their home. They will need to measure the length, width, and height in an appropriate measurement unit and calculate the volume. They should record what the object is and its dimensions. Then they should draw a model of the object using unitcubes.

Answer 9 sugar cubes
6 The city science center has a leafcutter ant tank that has the dimensions shown. DOK 3

5.MD.5.b

Part A Draw a model that can be used to find the number of cubic feet that will fit into the tank, without calculating the volume.

Part B What is the volume of the tank in cubic yards? Justify your answer using the model and volume formula.
1 converted the feet to yards first. There are 3 ft in 1 yd , so, 6 ft equals 2 yd and 3 ft equals 1 yd . The volume of the tank is $2 \times 1 \times 1=2$ yd 3.

