Introduction 3
Format of Books 4
Suggestions for Use 7
Annotated Answer Key and Extension Activities 9
Reproducible Tool Set 187

Objective

To write fractions with dengminators of 10 and 100 as equivalent decimals

(1). Introduction

Briefly review placevalue and the fundamental principle that each place has a value ten times that of the place to its immediate right. Students should recall that this means each plade to the right has $\frac{1}{10}$ the value of the place to its left. Then extend the discusslon to place value to the right of the ones place. Note that the decimal p/aces are separated from the whole number places by the decimal point, which is read as "ahd." Then work through the examples on the page and demonstrate locating a decimal on the numberline. Be sure students understand that $\frac{54}{100}$ falls betweer $\frac{5}{10}$ and $\frac{6}{10}$ because these fractions are equivalent/ to $\frac{50}{100}$ and $\frac{60}{100}$.

Think About It

Students should recognize that money is written in decimal notation. As a second example, they might cite weights on digital scales or amounts purchased at a gas pump.

Common Core Learning Standard

4.NF. 6 Use decimal notation for fractions with denominators 10 or 100.

Vocabulary

decimal notation: a way to write a fraction with a denominator of 10 or 100 using place value

22. Focused Instruction

In the first activity, students relate the denominator of a fraction to the place that represents it in a decimal number. They identify tenths as the first place to the right of the decimal point. Then they relate the places that the digits of a decimal number occupy to the denominators of fractions. They rewrite each place as a fraction, add the fractions, and write the sum as a fraction equivalent to the original decimal.
Next, students convert a fraction in hundredths to a decimal. They then locate its position on a number line, using the values of its tenths and hundredths digits.
Conclude the Focused Instruction section by having students convert two numbers between decimal and fractional forms.

(3) Guided Practice

Students should complete the Guided Practicesection on their own. Offer assistance as needed, pointing out the reminder and hint boxes along the right side of the page.

4 To determine if the numbers are equivalent, convert the decimal in each set to a fraction and compare the numbers. Choice A is incorrect; 2.0 is equivalent to the fraction $\frac{2}{1}$, but not the fraction $\frac{2}{10}$, which is the decimal 0.2 . Choice B is incorrect; 0.20 is the fraction $\frac{20}{100}$ and not equivalent to the other two expressions, which both equal the decimal 0.05 . Choice C is incorrect; 0.2 is the fraction $\frac{2}{10}$, which is equivalent to $\frac{20}{100}$ but not $\frac{20}{10}$, which is equal to 2 . Choice D is correct; 0.2 is equal to the fraction $\frac{2}{10}$ and $\frac{2}{10} \times \frac{10}{10}=\frac{20}{100}$.
5 PART A The decimal 0.51 is 51 hundredths. The number lines shows only tenths, so the tick marks must be interpreted as equivalent decimals: $0.5=$ 0.50 and $0.6=0.60$. the decimal 0.51 can then be placed a little after 0.5.
PART B To change 0.51 to a fraction, use the rightmost place value, hundredths, for the denominator and the digits 51 for the numerator: $\frac{51}{100}$.

6 The first expression is true; in the decimal, the 9 occupies the tenths place, so it represents $\frac{9}{10}$. The second expression is false; the 7 in the decinnal occupies the hundredths place, sø it represents the fraction $\frac{7}{100}$, not $\frac{7}{10}$. The third/expression is false; to add the fractions, change $\frac{4}{10}$ to $\frac{40}{100}$ and add $6++$ 40 for $\frac{46}{100}$, which is the decimal 0.46 , not 0.64 . The fourth expression is true because $\frac{1}{10}$ is equivalent to $\frac{10}{100}$, so the addition is $\frac{10}{100}+\frac{29}{100}=\frac{39}{100}$, which is 0.39 in decimal form. The fiffth expression is trye because $\frac{2}{10}$ is equivalentito $\frac{20}{100}$ and $/ 20+\beta 0 \leq$ $\frac{50}{100}$, which is expressed in decimal form as 0.50 .

