## TABLEOFONTENTS

About Finish Line Mathematics ..... 5
UNIT 1: Big Ideas from Grade 7 ..... 7
LESSON 1 7.RP.2.a-d Understanding Proportional Relationships [connects to 8.EE.5] ..... 8
LESSON 2 7.NS.1.d, 2.c Operations with Rational Numbers
[connects to 8.EE.7.a, b] ..... 17
LESSON 3 7.G. 5 Angle Relationships [connects to 8.G.5] ..... 24
LESSON 4 7.G. 1 Scale and Scale Drawings [connects to 8.G.3, 4] ..... 31
UNIT 1 REVIEW ..... 38
UNIT 2: The Number System ..... 43
LESSON 5 8.NS. 1 Understanding Rational and Irrational Numbers ..... 44
LESSON 6 8.NS.1, 2 Irrational Numbers ..... 51
UNIT 2 REVIEW ..... 58
UNIT 3: Expressions and Equations ..... 62
LESSON 7 8.EE. 1 Laws of Exponents ..... 63
LESSON 8 8.EE. 3 Scientific Notation ..... 70
LESSON 9 8.EE. 4 Operations with Scientific Notation ..... 77
LESSON 10 8.EE. 2 Radicals ..... 83
LESSON 11 8.EE. 5 Proportional Relationships ..... 89
LESSON 12 8.EE. 6 Linear Relationships ..... 98
LESSON 13 8.EE.7.a, b Solving Linear Equations ..... 106
LESSON 14 8.EE.8.a, b Understanding Systems of Equations ..... 114
LESSON 15 8.EE.8.b Solving Systems of Equations ..... 121
LESSON 16 8.EE.8.c Solving Problems Using Systems of Equations ..... 128
UNIT 3 REVIEW ..... 135
UNIT 4: Functions ..... 141
LESSON 17 8.F. Understanding Functions ..... 142
LESSON 18 8.F.3, 4 Linear Functions ..... 151
LESSON 19 8.F.3, 5 Graphs of Functions ..... 159
LESSON 20 8.F. 2 Comparing Functions ..... 168
UNIT 4 REVIEW ..... 176
UNIT 5: Geometry ..... 181
LESSON 21 8.G.1.a-c, 3 Translations ..... 182
LESSON 22 8.G.1.a-c, 3 Reflections ..... 191
LESSON 23 8.G.1.a-c, 3 Rotations ..... 200
LESSON 24 8.G. 3 Dilations ..... 208
LESSON 25 8.G. 2 Congruent Figures ..... 216
LESSON 26 8.G. 4 Similar Figures ..... 225
LESSON 27 8.G. 5 Angle Relationships ..... 235
LESSON 28 8.G. 6 Understanding the Pythagorean Theorem ..... 244
LESSON 29 8.G. 7 Using the Pythagorean Theorem ..... 251
LESSON 30 8.G. 8 Finding Distance Between Two Points ..... 259
LESSON 31 8.G. 9 Volume ..... 267
UNIT 5 REVIEW ..... 275
UNIT 6: Statistics and Probability ..... 282
LESSON 32 8.SP. 1 Scatter Plots ..... 283
LESSON 33 8.SP. 2 Lines of Best Fit ..... 293
LESSON 34 8.SP. 3 Solving Problems Using Bivariate Measurement Data ..... 302
LESSON 35 8.SP. 4 Two-Way Tables ..... 309
UNIT 6 REVIEW ..... 317
Glossary ..... 323
Flash Cards ..... 329

## 18 Linear Functions

## Introduction

A linear function is any function with a graph that is a straight line. The equation for a linear function can be written in slope-intercept form, $y=m x+b$, where $m$ is the slope and $b$ is the $\boldsymbol{y}$-intercept. The slope is the rate of change or howsteep the line is. Slope is shown as the ratio of the change in $火$ to the change in $x$. The $y$-intercept is where the graph crosses the $y$-axis at the point $(0, b)$.

Which of these equations is a linear function?
Equation 1: $y=2 x^{2}+3$
Equation 2: $-5 x+y=1$
In equations 1 and $3, x$ is raised to a power, so these equations are not linear. In equation 4, $x$ appears in the denomirnator, so it is not linear. Equation 2 can be written in slope-intercept form by adding $5 x$ to both sides.


You can write any linear equation in slope-intercept form by isolating y using inverse operations.

A function is
nonlinear if one of the variables is raised to a power, inside absolute value symbols, or in the denominator of a fraction when solved for one of the variables.

Write a linear equation from the values in the table.

When using the slope formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$, make sure to pick points that are ordered pairs.

To determine the slope, pick any two points and use the slope formula. Use $(0,5)$ and $(-3,-1)$.


To determine the $y$-intercept, find the value of $y$ when $x$ is 0 . In the table, the value of $y$ is 5 when $x$ is 0 . The slope is 2 and the $y$-intercept is 5 . So, $m=2$ and $b=5$.

The equation is $y=2 x+5$.

Write a linear equation from the graph.



The graph crosses the $y$-axis at -4 , so the $y$-intercept is -4 .
To find the rate of change, pick any two points and use the slope formula:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-2}{4-\beta}=\frac{2}{1}=2
$$

So, the equation is $y=2 x-4$.

Think About It


What is an example of a linear relationship in your daily life?


## Focused Instruction

Many real-life situations can be modeled with a linear function. Think about the relationship between the variables and the constants in the situation.
> The Parker family went camping. The campground charged an entrance fee of $\$ 20$ and $\$ 10$ per night. Write a function to determine the total cost, $y$, for a capping trip for $x$ nights.
How much does the campground charge per night? $\qquad$
How much does the campground charge for entrance? $\qquad$
What does $x$ present in this problem? $\qquad$

Write an expression to represent the cost for $x$ nights of camping only.

Is the entrance fee a constant or does it change?

Is the entrance fee added to or subtracted from the cost per night to camp? $\qquad$
What does $y$ represent in this problem?


Think about the slope-intercept form of an equation. Which value represents $m$ in this problem? represents $b$ ? $\qquad$
$\qquad$ Which value

The slope-intercept form for a linear equation is $y=m x+b$.

Write an equation in slope-intercept form representing the total cost for $x$ nights of camping.


## Use information in a situation to find the slope and write an equation for a linear function.

A candle is 12 inches tall. After it burns for 4 hours, it is 9 inches tall. Cam graphs the relationship/ between the height of the candle, $y$, and the amount of time it burns, $x$.
What is the initial height of the candle?
 Write this as an ordered pair.

$\qquad$ Write this as
 an ordered pair. $\qquad$
Use the two points you found above to find the slope of this linear


## Use information in a table to determine if a function is linear

Zachary completed a science project to determine the height (h) of a/helum balloon over time $(t)$. The results of the experiment are shown in the table.

| Time, $\boldsymbol{t}$ (in seconds) | 0 | 5 | 10 | 20 | 25 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Height, $\boldsymbol{h}$ (in feet) | 0 | 12 | 16 | 19 | 18 |

Which value represents $x$ ? $\qquad$
Which value represents $y$ ? $\qquad$


## Use what you know about functions to soive these problems.

1 Circle the equation that represents a linear function.

$$
y=\sqrt{x+2}
$$



$$
y=\frac{1}{2} x^{2}
$$



## Solve the following problems.

1 The Kirk family rents a motorboat while on vacation. They have to pay a non-refundable fee of $\$ 50$ plus $\$ 15$ per hour. Write an equation to describe the total amount the Kirk family will pay $(y)$ for the total number of hours $(x)$. otermine the rate
orange/ and the otermine the rate
orange/ and the

## Answer

$\qquad$


2 The height of a ball dropped from 4 feet is shown in the graph.


Does this graph show a linear relationship?

## Answer

$\qquad$

3 This graph shows the relationship between the height of a plant, in inches, and the time, in months, that grows.

## Solve the following problems.

1 The formula $F=1.8 \mathrm{C}+32$ converts a temperature in Cels ${ }^{\prime}$ us to the temperature in Fahrenheit.

Part A Which value represents the rate of change, or slope?

## Answer

$\qquad$
Part B What is the temperature in Fahrenheit when the temperature in Celsius is $0^{\circ}$ ?

Answer $\qquad$ $-$
Part C Complete the table to find the Fahrenheit temperature at the given Celsius temperature.

| ${ }^{\circ} \mathbf{C}$ | -20 | 10 | 0 | 25 |
| :---: | :---: | :---: | :---: | :---: |
| ${ }^{\circ} \mathbf{F}$ |  |  |  |  |

Part D is this relationship linear? Explain how you know.

2 Determine which table represents a linear relationship.
A

| $\boldsymbol{x}$ | 1 | 3 | 5 | 7 | 9 |
| :--- | :--- | :--- | :---: | :---: | :---: |
| $\boldsymbol{y}$ | 1 | 9 | 25 | 49 | 81 |

3 This function table shows the relationship between the number of hours,h, an auto mechanic works to repair a car and the total cost, $C$, in dollars, the mechanic charges.

| $\boldsymbol{h}$ | $\boldsymbol{C}(\$)$ |
| :---: | :---: |
| 1 | 110 |
| 2 | 170 |
| 3 | 230 |
| 4 | 290 |

Part A Write an equation that models this relationship. Explain how you


4 Match the equations from the box with the correct description. You will not use all the equations


5 Which table of values matches the equation $y=-x+3$ ?

A

| $x$ | $y$ |
| :---: | :---: |
| 2 | -1 |
| 4 | 1 |
| 6 | 3 |
| 8 | 5 |

B

| $x$ | $y$ |
| :---: | :---: |
| 2 | 1 |
| 4 | -1 |
| 6 | -3 |
| 8 | -5 |

C

| $x$ | $y$ |
| :---: | :---: |
| 2 | 5 |
| 4 | 7 |
| 6 | 9 |
| 8 | 11 |

D

| $\boldsymbol{x}$ | $\boldsymbol{y}$ |
| :---: | :---: |
| 2 | -5 |
| 4 | -7 |
| 6 | -9 |
| 8 | -11 |

6 What is the slope of a line that passes through the points $(2,5)$ and $(9,26)$ ?


