TABLEOCONTENTS

About Finish Line Mathematics 5
UNIT 1: Big Ideas from Grade 5 7
LESSON 1 5.NF. 6 Multiplying Fractions [connects to 6.G.2] 8
LESSON 2 5.NBT. 7 Operations with Decimals [connects to 6.NS.3] 16
LESSON 3 5.G.1, 2 Using a Coordinate Plane [connects to 6.Ns.8, 6.G.3] 25
LESSON 4 5.OA.1, $2 \quad$ Writing and Evaluating Expressions
[connects to 6.EE.1; 2.a, c] 33
UNIT 1 REVIEW 39
UNIT 2: Ratios and Proportional Relationships 45
LESSON 5 6.RP. 1
Ratios 46
LESSON 6 6.RP.3.a Equivalent Ratios 53
LESSON 7 6.RP. 2 Unit Rates 60
LESSON 8 6.RP.3.b Solving Problems with Unit Rates 66
LESSON 9 6.RP.3.C Percents 72
LESSON 10 6.RP.3.d Ratio Reasoning with Measurement Conversions 79
UNIT 2 REVIEW 86
UNIT 3: The Number System 92
LESSON 11 6.NS. 2 Dividing Whole Numbers 93
LESSON 12 6.NS. 1 Dividing Fractions 100
LESSON 13 6.NS. 3 Adding and Subtracting Decimals 107
LESSON 14 6.NS. 3 Multiplying and Dividing Decimals 114
LESSON 15 6.NS. 4 Greatest Common Factor and Least Common Multiple 122
LESSON 16 6.NS. 5
Integers 129
LESSON 17 6.NS.6.a, c Rational Numbers on a Number Line 135
LESSON 18 6.NS.6.b, c Rational Numbers on a Coordinate Plane 142
LESSON 19 6.NS.7.a, b Comparing and Ordering Rational Numbers 151
LESSON 20 6.NS.7.c, d Absolute Value 158
UNIT 3 REVIEW 165
UNIT 4: Expressions and Equations 169
LESSON 21 6.EE. $1 \quad$ Writing Numerical Expressions 170
LESSON 22 6.EE.2.a, b; 6 Writing Algebraic Expressions 177
LESSON 23 6.EE. 1 Evaluating Numerical Expressions 184
LESSON 24 6.EE.2.c Evaluating Algebraic Expressions 191
LESSON 25 6.EE.3, 4 Equivalent Expressions 198
LESSON 26 6.EE. 5 Understanding Equations and Inequalities 205
LESSON 27 6.EE. 7 Solving Problems Using Equations 211
LESSON 28 6.EE. 8 Writing and Modeling Inequalities 218
LESSON 29 6.EE. 9 Relationships Between Two Variables 224
LESSON 30 6.EE. 9 Graphing Relationships 231
UNIT 4 REVIEW 238
UNIT 5: Geometry 243
LESSON 31 6.G. 1 Area 244
LESSON 32 6.G. 1 Solving Problems Using Area 251
LESSON 33 6.G. 2 Volume 258
LESSON 34 6.G.3, 6.NS. 8 Coordinate Graphing 264
LESSON 35 6.G. 4 Nets and Surface Area 271
UNIT 5 REVIEW 278
UNIT 6: Statistics and Probability 283
LESSON 36 6.SP. 1 Statistical Questions 284
LESSON 37 6.SP. 2 Data Distributions 289
LESSON 38 6.SP.3; 5.c, d Using Measures of Center and Measures of Variability 296
LESSON 39 6.SP. 4 Data Displays 304
LESSON 40 6.SP.5.a-d Summarizing Data 311
UNIT 6 REVIEW 317
Glossary 322
Flash Cards 329

12 Dividing Fractions

Introduction

To divide a number by a fraction, multiply by the reciprocal of the divisor. The reciprocal of a fraction is its inverse.

Find $\frac{2}{5} \div \frac{3}{5}$.
The divisor is $\frac{3}{5}$. The reciprocal of $\frac{3}{5}$ is $\frac{5}{3}$.
Multiply by the reciprocal: $\frac{2}{5} \times \frac{5}{3}=\frac{10}{15}$
Simplify: $\frac{10}{15}=\frac{2}{3}$

For problems with whole numbers, you can write the whole number as a fraction with 1 as the denominator. You can rewrite mixed numbers as improper fractions as well. To solve word problems that involve dividing fractions, you can write an equation or draw a fraction model to help you find the answer.

Tammy pours $\frac{2}{3}$ cup of trail mix into a bag. How many $\frac{1}{6}$-cup servings are in the bag?

To write a mixed number as an improper fraction, multiply the whole number by the denominator. Then add the numerator. The denominator stays the same.

$$
2 \frac{1}{2}=\frac{2 \times 2+1}{2}=\frac{5}{2}
$$

Start by writing an equation. The question asks how many groups of $\frac{1}{6}$ are in $\frac{2}{3}$

Divide the fractions by multiplying by the reciprocal of the divisor.

Sometimes when you are multiplying fractions, you can cancel common factors to make it easier to solve.

In the equation on the previous page, you can cancel out the common fäctor, 3, for 3 and 6 :

$$
\frac{2}{\neq} \times \frac{b^{2}}{1}=\frac{4}{1}=4
$$

Think About It

Recipes often involve measurements in fraction form. Describe an example of when you might need to divide an amount by a fraction when using a recipe.

Focused Instruction

By cancelling common factors, you work with smaller numbers. This makes

 the operations easier to do.$>$ Find the quotient of $\frac{3}{10} \div \frac{5}{12}$.
Which fraction must you find the reciprocal of?
What is the reciproca of that fraction? - _
Rewrite this division problem as a multiplication problem. \qquad
Look at the denominator of the dividend and the numerator of the divisor. Do these numbers have any common factors? \qquad If so, what is the common factor?]
How many times does the common factor divide each number?
these numbers have any common factors? \qquad

If so, cancel them as you did before. If not, leave them as they are.
Do the multiplication in your expression. What is the quotient
of $\frac{3}{10} \div \frac{5}{12}$? \qquad

How does cancelling common factors help you put the answer in lowest terms?

Sometimes you must divide a fraction by a whole number. You can use a

 fraction model to help you.There are 5 friends who are sharing a $\frac{1}{2}$-pound bag of tortilla chips evenly. What fraction of a pound will each friend get?

Start by using a fraction model. Shork $\frac{1}{2}$ pound on the fraction bar.

Divide the fraction bar to show 5 groups in each part.
How many smaller seetions are there in all?

What fraction of the bar does each smaller section make up? \qquad
How much of a pound does each friend get? \qquad
Write and solve the same problem as an equation. \qquad

Use what you know about dividing fractions to solve these problems.

Solve the following problems.

1 Sabrina and Jake are at soccer camp. The length of a soccer practice is $\frac{2}{3}$ hour. The coaches have set aside 8 hours for soccer practice. How many soccer practices can the coaches have?

Part A Write and solve an equation to answer the question.

Answer

Part B Draw a model of this problem using a fraction bar.

Part C Explain how the nodel matches the solution from Part A.

2 Carmen walked $2 \frac{1}{2}$ miles in $\frac{3}{4}$ hour. What was her average walking speed, in miles per hour?

Speed is measured by distance divided by time.

Solve the following problems.

1 A bottle contains 8 cups of juice. The juice is poured into glasses that hold $\frac{3}{4}$ cup each. How many glasses can be filled with the juice?

A 6
B $8 \frac{3}{4}$
C $\quad 10 \frac{2}{3}$
D 12

2 Manuel ordered 6 super-sub sandwiches for a patty. Each $\frac{1}{3}$ of a sandwich is 1 serving. Including Manuel, there vvill be 作 pepple at the party. Manuel wants to be sure everyone will get at least 1 serving,
Part A Draw a number line to illustrate this situation.

Part B Write a division equation to solve this problem.

Part C Did Manuel order enough food to feed 16 people? Justify your

3 The area of a rectangular ice rink is $1,035 \frac{2}{9}$ square feet. The length of the ice rink is $25 \frac{2}{3}$ feet.

Part A Write an equation to find the width of the ice/ink. Use improper fractions. What is the width of the rink, in feet? Showyour work.
\qquad Part B What is the width of the rink, in feet? Showyour work.

4 Write and solve a division equation based on the model.

Answer \qquad

5 The perimeter of a square is found by multiplying the side lengths by 4 . The perimeter of a certain square is $40 \frac{5}{8}$ feet. Write and solve an equation to find the length of one side of the-square. Show your work. work.

Answer \qquad miles per hour

7 Mark True or False for each of the following-statements. The reciprocal of 38 is $\frac{1}{38}$.

The reciprocal of $\frac{25}{3}$ is $3 \frac{2}{5}$.
The quotient of $4 \frac{1}{2} \div 2$ is $2 \frac{1}{2}$.

The quotient of $\frac{3}{4} \div \frac{8}{3}$ is 2 .

True

8 A piece of land is $\frac{2}{3}$ acre. It Is divided evenly into 3 pieces. What is the size of each piece of land?

A $\frac{1}{3}$ acre
B $\frac{2}{9}$ acre
C 2 acres

D $2 \frac{1}{3}$ acres

