TABLE OF CONTENTS

About Fi	inish Line Ge	eorgia Milestones Math	
UNIT 1:	Big Ideas fro	om Grade 2	7
LESSON 1	MGSE2.NBT.5, 7	Adding Two- and Three-Digit Numbers [connects to MGSE3.NBT.2]	
LESSON 2	MGSE2.NBT.5, 7	Subtracting Two- and Three-Digit Numbers [connects to MGSE3.NBT.2]	
LESSON 3	MGSE2.MD.1	Measuring Length [connects to MGSE3.MD.4]	23
LESSON 4	MGSE2.G.2	Tiling Rectangles [connects to MGSE3.MD.7a, 7c]	29
LESSON 5	MGSE2.G.1	Polygons [connects to MGSE3.G.1]	
		UNIT 1 REVIEW	
UNIT 2:	Operations	and Algebraic Thinking, Part 1	51
LESSON 6	MGSE3.OA.1	Understanding Multiplication	
LESSON 7	MGSE3.OA.5	Properties of Multiplication	
LESSON 8	MGSE3.OA.2	Understanding Division	
LESSON 9	MGSE3.OA.6	Connecting Multiplication and Division	
LESSON 10	MGSE3.0A.4, 7	Multiplication Facts	
LESSON 11	MGSE3.0A.4, 7	Division Facts	
LESSON 12	MGSE3.OA.9	Patterns	
		UNIT 2 REVIEW	
UNIT 3:	Number and	l Operations in Base Ten	105
LESSON 13	MGSE3.NBT.1	Rounding Whole Numbers	106
LESSON 14	MGSE3.NBT.2	Adding Whole Numbers	
LESSON 15	MGSE3.NBT.2	Subtracting Whole Numbers	
LESSON 16	MGSE3.NBT.3	Multiplying by Multiples of Ten	
		UNIT 3 REVIEW	
UNIT 4:	Operations	and Algebraic Thinking, Part 2	138
LESSON 17	MGSE3.OA.3	One-Step Word Problems with Multiplication and Division	139
LESSON 18	MGSE3.OA.8	Two-Step Word Problems	
		UNIT 4 REVIEW	

UNIT 5: Nu	mber and	l Operations—Fractions	160		
LESSON 19 MG	SSE3.NF.1	Understanding Fractions	161		
LESSON 20 MG 2b	SSE3.NF.2a,	Fractions on a Number Line	168		
LESSON 21 MG 3b,		Equivalent Fractions	175		
LESSON 22 MG	GSE3.NF.3d	Comparing Fractions	182		
		UNIT 5 REVIEW			
UNIT 6: Me	asureme	nt and Data	195		
LESSON 23 MG	GSE3.MD.1	Time	196		
LESSON 24 MG	GSE3.MD.1	Solving Problems with Time	203		
LESSON 25 MG	SSE3.MD.2	Liquid Volume	210		
LESSON 26 MG	SSE3.MD.2	Mass	217		
LESSON 27 MG	GSE3.MD.3	Picture Graphs	224		
LESSON 28 MG	GSE3.MD.3	Bar Graphs	232		
LESSON 29 MG	GSE3.MD.4	Measurement Data on Line Plots	241		
LESSON 30 MG 5b,	GSE3.MD.5a, 6	Understanding Area	249		
LESSON 31 MG 7b,		Finding Area	256		
LESSON 32 MG	GSE3.MD.8	Perimeter and Area	263		
		UNIT 6 REVIEW	271		
UNIT 7: Geo	ometry		279		
LESSON 33 MG	GSE3.G.1	Plane Figures and Polygons	280		
LESSON 34 MG	GSE3.G.1	Quadrilaterals	287		
LESSON 35 MG	GSE3.G.2	Partitioning Shapes	294		
		UNIT 7 REVIEW	301		
Glossary			306		
Flash Cards 31					

31 Finding Area

A **plane figure** is a flat shape. **Area** is a measure of the space inside the figure. In Lesson 30, you learned to measure area by covering the plane figure with unit squares. For rectangles and squares, you can use another method as well. You can multiply the length by the width.

What is the area of the rectangle?

Count the unit squares that cover the rectangle. There are 15 in all. So the area is 15 square units.

Now look again at the unit squares. There are 3 rows of 5 unit squares. Multiply: Think of the unit squares in a rectangle as an array.

The area is 15 square units. Both methods give the same result.

Most of the time, you will not see the square units in a figure. You will only know the measurements. The **distributive property** can help you find the area.

5

3

Find the area of the large rectangle.

The length of the rectangle in units is 5 + 3. The width of the rectangle is 4 units. In order to find the area, you multiply the length by the width.

$$4 \times (5 + 3) =$$

(4 × 5) + (4 × 3) = 20 + 12
= 32 square units

The area is the sum of the areas of the two rectangles (shaded and not shaded).

The distributive property says that multiplying a number by a sum is the same as multiplying each number in the sum.

 $a \times (b + c) = (a \times b) + (a \times c)$ $4 \times (3 + 1) = (4 \times 3) + (4 \times 1)$ $4 \times 4 \neq 12 + 4$ 16 = 16

What is something someone might need to know the area of in real life? Why?

Focused Instruction

You can use square tiles to help you understand area. Work with a partner.

Cut a piece of paper so that you have a rectangle that measures 6 inches long and 5 inches wide.

What is the length of the rectangle?

Label the length on your rectangle

What is the width of the rectangle?

Label the width on your rectangle.

Use your square tiles. Cover your rectangle with unit squares.

How many unit squares can you use to cover the rectangle?

What is the area of the rectangle?

How else can you find the area without using unit squares?

Use the other method to find the area. Show your work.

Did you find the same area using both methods?

Sometimes it helps to draw a picture. Use a picture to help you solve this problem.

Samson is painting the roof of a birdhouse. The roof is 8 inches long and 7 inches wide. He has enough craft paint left to cover 50 square inches.

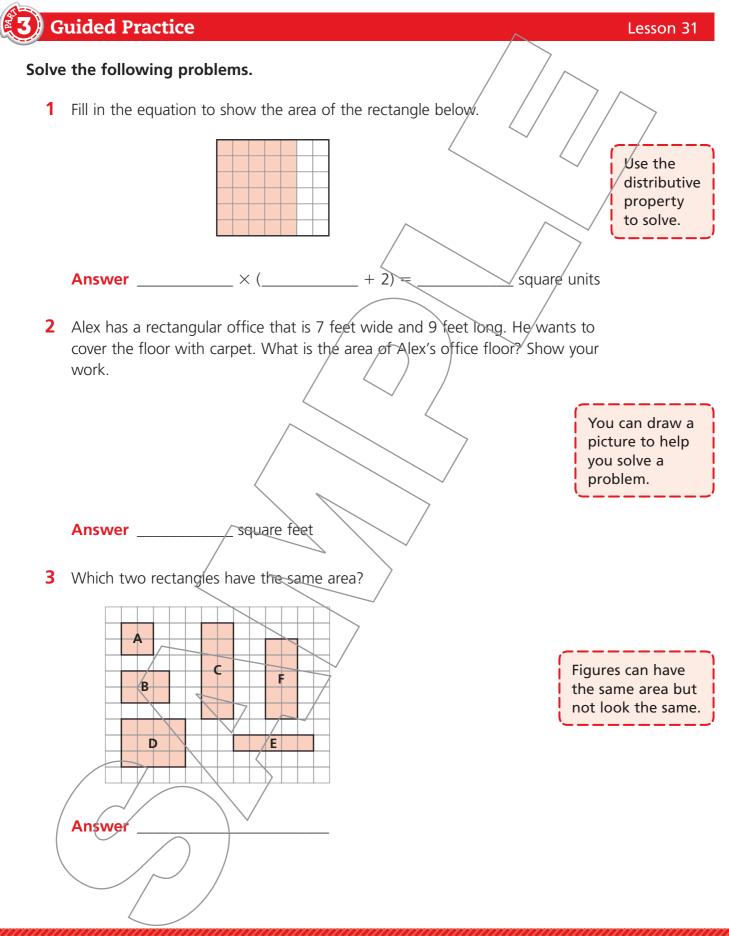
On a separate piece of paper, draw the roof of the birdhouse. Label the length and width.

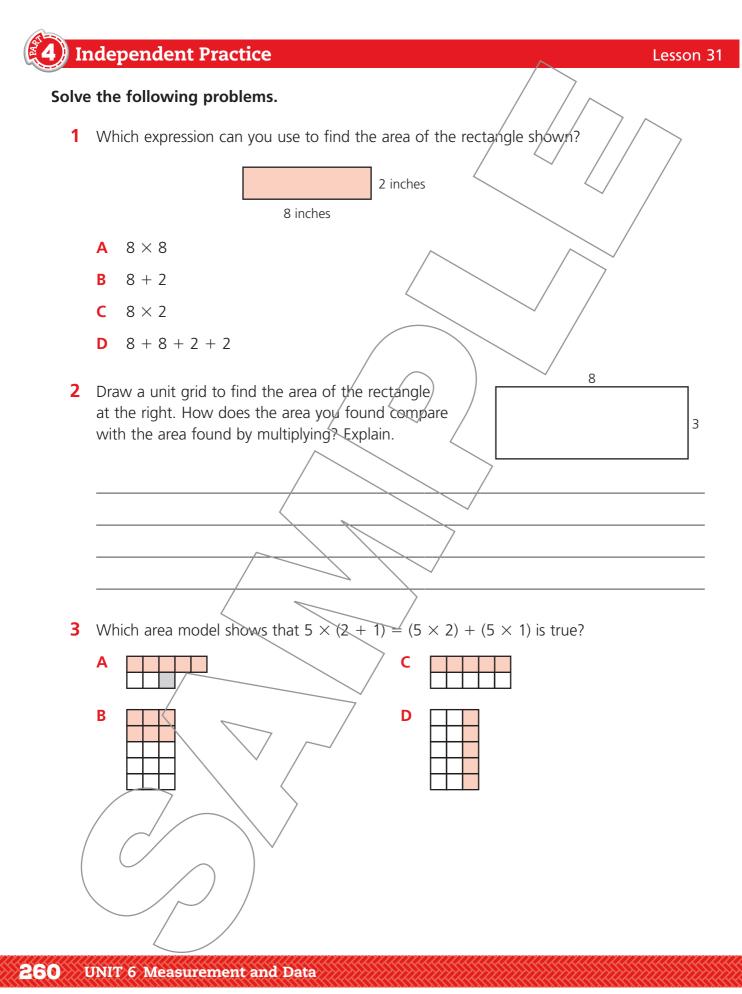
Draw grid lines on the roof to divide it into equal squares. Make the side of each square 1 inch.

How many inches long is the roof?

How many inches wide is the roof?

How many squares did you draw on the roof?

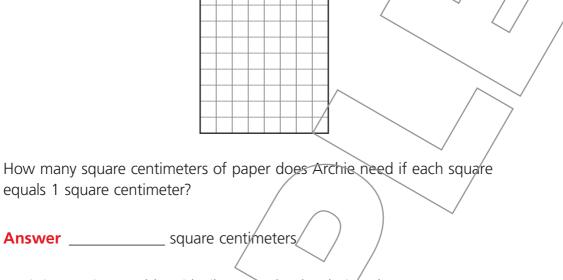

What operation can you use to find the area?

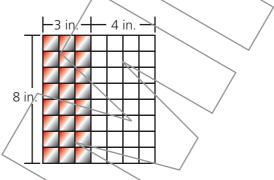

Find the area using this operation.

Did you get the same area as when you counted squares?

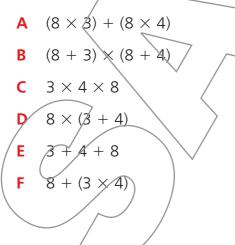
Use what you know about area to answer these questions.

- 1 Keaton's poster is 15 inches long and 10 inches wide. How many square-inch tiles could he cover it with?
- 2 Mariah drew a rectangle on the playground with chalk. It is 5 feet long and 4 feet wide. What is the area of the rectangle?




Independent Practice

Lesson 31


4 Archie wants to cover the top of his model table with colored paper. The top of the table is shown.

5 Ronit is covering a table with tiles to make the design shown.

Which expressions could be used to find the area, in square inches? Select the **two** correct answers.

Independent Practice

6 Celia is covering her kitchen floor with tiles that are each 1 square foot. The floor is in the shape of a rectangle that is 6 feet wide and 9 feet long. How many tiles does she need to cover the entire kitchen floor?

Answer _____ tiles

Answer

7 Sally built a puzzle using 42 square units. What are possible dimensions of the puzzle?

Answer _____

- 8 Alyssa wants to wallpaper one wall of her living room. The wall is 9 feet high and 18 feet long.
 - **Part A** How many square feet of wallpaper will Alyssa need to cover the wall? Show your work.

Part B The wallpaper Alyssa has chosen comes in rolls that are 3 feet wide and 24 feet long. How many rolls of wallpaper will Alyssa need to cover the wall? Explain.